RESUMEN
BACKGROUND: Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. METHODS: With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. RESULTS: Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. CONCLUSION: In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.
Asunto(s)
Quistes , Hepatopatías , Péptidos Cíclicos , Riñón Poliquístico Autosómico Dominante , Somatostatina/análogos & derivados , Humanos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/patología , Hígado/patología , Hepatopatías/tratamiento farmacológico , Hepatopatías/complicaciones , Somatostatina/uso terapéutico , Somatostatina/farmacología , Ácidos y Sales BiliaresRESUMEN
OBJECTIVES: Early diagnosis of inborn errors of metabolism (IEM) is crucial to ensure early detection of conditions which are treatable. This study reports on targeted metabolomic procedures for the diagnosis of IEM of amino acids, acylcarnitines, creatine/guanidinoacetate, purines/pyrimidines and oligosaccharides, and describes its validation through external quality assessment schemes (EQA). METHODS: Analysis was performed on a Waters ACQUITY UPLC H-class system coupled to a Waters Xevo triple-quadrupole (TQD) mass spectrometer, operating in both positive and negative electrospray ionization mode. Chromatographic separation was performed on a CORTECS C18 column (2.1 × 150, 1.6⯵m). Data were collected by multiple reaction monitoring. RESULTS: The internal and EQA results were generally adequate, with a few exceptions. We calculated the relative measurement error (RME) and only a few metabolites displayed a RME higher than 30â¯% (asparagine and some acylcarnitine species). For oligosaccharides, semi-quantitative analysis of an educational panel clearly identified the 8 different diseases included. CONCLUSIONS: Overall, we have validated our analytical system through an external quality control assessment. This validation will contribute to harmonization between laboratories, thus improving identification and management of patients with IEM.
Asunto(s)
Errores Innatos del Metabolismo , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Errores Innatos del Metabolismo/diagnóstico , Cromatografía Líquida de Alta Presión/normas , Cromatografía Líquida de Alta Presión/métodos , Control de Calidad , Carnitina/análogos & derivados , Carnitina/análisis , Metabolómica/métodosRESUMEN
Adenylosuccinase deficiency is a rare inborn error of metabolism. We present a newborn who died at 52 days of age with clinical features suggestive of severe epileptic encephalopathy and leukodystrophy of unknown cause. Post-mortem examination showed an unusual vacuolar appearance of the brain. A molecular autopsy performed via singleton clinical exome analysis revealed a known pathogenic and a variant of uncertain significance in ADSL that encodes adenylosuccinase. Tests on previously stored plasma samples showed elevated succinyladenosine and succinylaminoimidazole carboxamide riboside levels. Adenylosuccinase activity in stored fibroblasts was only ~5% of control confirming the diagnosis of adenylosuccinase deficiency in the child. The parents opted for a chorionic villus biopsy in a subsequent pregnancy and had a child unaffected by adenylosuccinase deficiency. This report adds vacuolating leukodystrophy as a novel feature of adenylosuccinase deficiency and shows the power of biochemical investigations directed by genomic studies to achieve accurate diagnosis. Importantly, this case demonstrates the importance of anticipatory banking of biological samples for reverse biochemical phenotyping in individuals with undiagnosed disorders who may not survive.
Asunto(s)
Adenilosuccinato Liasa , Trastorno Autístico , Errores Innatos del Metabolismo de la Purina-Pirimidina , Niño , Recién Nacido , Lactante , Humanos , Autopsia , Adenilosuccinato Liasa/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genéticaRESUMEN
OBJECTIVE: To investigate if dihydropyrimidine dehydrogenase phenotyping has added value when combined with DPYD genotyping in predicting fluoropyrimidine-related toxicity. METHODS: Retrospective cohort study in which treatment and toxicity data were collected of 228 patients genotyped for four DPYD variants and phenotyped using an ex vivo peripheral blood mononuclear cell assay. RESULTS: Severe toxicity occurred in 25% of patients with a variant and normal dihydropyrimidine dehydrogenase activity, in 21% of patients without a variant and with decreased dihydropyrimidine dehydrogenase activity, and in 29% of patients without a variant and with normal dihydropyrimidine dehydrogenase activity (controls). The majority of patients with a variant or a decreased dihydropyrimidine dehydrogenase activity received an initial dose reduction (68% and 53% vs 19% in controls) and had a lower mean dose intensity (75% and 81% vs 91% in controls). Fifty percent of patients with a variant and decreased enzyme activity experienced severe toxicity, despite the lowest initial dose and whole treatment dose intensity. They also experienced more grade 4/5 toxicities. CONCLUSIONS: Our results indicate that a combined genotype-phenotype approach could be useful to identify patients at increased risk for fluoropyrimidine-associated toxicity (e.g. patients with a variant and decreased dihydropyrimidine dehydrogenase activity). Because the group sizes are too small to demonstrate statistically significant differences, this warrants further research in a prospective study in a larger cohort.
Asunto(s)
Dihidrouracilo Deshidrogenasa (NADP) , Leucocitos Mononucleares , Dihidrouracilo Deshidrogenasa (NADP)/genética , Capecitabina/efectos adversos , Genotipo , Estudios Prospectivos , Estudios Retrospectivos , Fluorouracilo/efectos adversos , Antimetabolitos Antineoplásicos/efectos adversosRESUMEN
ß-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid to ß-alanine and ß-aminoisobutyric acid, ammonia and CO2. To date, only a limited number of genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified ß-ureidopropionase deficient individuals. Patients presented mainly with neurological abnormalities and markedly elevated levels of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid in urine. Analysis of UPB1, encoding ß-ureidopropionase, showed 5 novel missense variants and two novel splice-site variants. Functional expression of the UPB1 variants in mammalian cells showed that recombinant ß-ureidopropionase carrying the p.Ala120Ser, p.Thr129Met, p.Ser300Leu and p.Asn345Ile variant yielded no or significantly decreased ß-ureidopropionase activity. Analysis of the crystal structure of human ß-ureidopropionase indicated that the point mutations affect substrate binding or prevent the proper subunit association to larger oligomers and thus a fully functional ß-ureidopropionase. A minigene approach showed that the intronic variants c.[364 + 6 T > G] and c.[916 + 1_916 + 2dup] led to skipping of exon 3 and 8, respectively, in the process of UPB1 pre-mRNA splicing. The c.[899C > T] (p.Ser300Leu) variant was identified in two unrelated Swedish ß-ureidopropionase patients, indicating that ß-ureidopropionase deficiency may be more common than anticipated.
Asunto(s)
Errores Innatos del Metabolismo de la Purina-Pirimidina , Precursores del ARN , Anomalías Múltiples , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Encefalopatías , Humanos , Mamíferos/genética , Trastornos del Movimiento , Mutación , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , beta-Alanina/genética , beta-Alanina/orinaRESUMEN
Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.
Asunto(s)
Enfermedades Neurodegenerativas/genética , Nucleósido-Fosfato Quinasa/genética , Animales , Femenino , Humanos , Masculino , Microcefalia/genética , Mutación , Pez CebraRESUMEN
Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.
Asunto(s)
Fenilcetonurias , Tirosinemias , Niño , Humanos , Masculino , Salud Mental , Redes y Vías Metabólicas , Pruebas Neuropsicológicas , Tirosinemias/genéticaRESUMEN
The current diagnostic work-up of inborn errors of metabolism (IEM) is rapidly moving toward integrative analytical approaches. We aimed to develop an innovative, targeted urine metabolomics (TUM) screening procedure to accelerate the diagnosis of patients with IEM. Urinary samples, spiked with three stable isotope-labeled internal standards, were analyzed for 258 diagnostic metabolites with an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) configuration run in positive and negative ESI modes. The software automatically annotated peaks, corrected for peak overloading, and reported peak quality and shifting. Robustness and reproducibility were satisfactory for most metabolites. Z-scores were calculated against four age-group-matched control cohorts. Disease phenotypes were scored based on database metabolite matching. Graphical reports comprised a needle plot, annotating abnormal metabolites, and a heatmap showing the prioritized disease phenotypes. In the clinical validation, we analyzed samples of 289 patients covering 78 OMIM phenotypes from 12 of the 15 society for the study of inborn errors of metabolism (SSIEM) disease groups. The disease groups include disorders in the metabolism of amino acids, fatty acids, ketones, purines and pyrimidines, carbohydrates, porphyrias, neurotransmitters, vitamins, cofactors, and creatine. The reporting tool easily and correctly diagnosed most samples. Even subtle aberrant metabolite patterns as seen in mild multiple acyl-CoA dehydrogenase deficiency (GAII) and maple syrup urine disease (MSUD) were correctly called without difficulty. Others, like creatine transporter deficiency, are illustrative of IEM that remain difficult to diagnose. We present TUM as a powerful diagnostic screening tool that merges most urinary diagnostic assays expediting the diagnostics for patients suspected of an IEM.
Asunto(s)
Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/orina , Metaboloma , Urinálisis/métodos , Biomarcadores/orina , Cromatografía Líquida de Alta Presión/métodos , Humanos , Metabolómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodosRESUMEN
Delayed graft function is the manifestation of ischemia reperfusion injury in the context of kidney transplantation. While hundreds of interventions successfully reduce ischemia reperfusion injury in experimental models, all clinical interventions have failed. This explorative clinical evaluation examined possible metabolic origins of clinical ischemia reperfusion injury combining data from 18 pre- and post-reperfusion tissue biopsies with 36 sequential arteriovenous blood samplings over the graft in three study groups. These groups included living and deceased donor grafts with and without delayed graft function. Group allocation was based on clinical outcome. Magic angle NMR was used for tissue analysis and mass spectrometry-based platforms were used for plasma analysis. All kidneys were functional at one-year. Integration of metabolomic data identified a discriminatory profile to recognize future delayed graft function. This profile was characterized by post-reperfusion ATP/GTP catabolism (significantly impaired phosphocreatine recovery and significant persistent (hypo)xanthine production) and significant ongoing tissue damage. Failing high-energy phosphate recovery occurred despite activated glycolysis, fatty-acid oxidation, glutaminolysis and autophagia, and related to a defect at the level of the oxoglutarate dehydrogenase complex in the Krebs cycle. Clinical delayed graft function due to ischemia reperfusion injury associated with a post-reperfusion metabolic collapse. Thus, efforts to quench delayed graft function due to ischemia reperfusion injury should focus on conserving metabolic competence, either by preserving the integrity of the Krebs cycle and/or by recruiting metabolic salvage pathways.
Asunto(s)
Trasplante de Riñón , Daño por Reperfusión , Humanos , Riñón , Trasplante de Riñón/efectos adversos , Reperfusión , Daño por Reperfusión/metabolismoRESUMEN
PURPOSE: Biallelic CAD variants underlie CAD deficiency (or early infantile epileptic encephalopathy-50, [EIEE-50]), an error of pyrimidine de novo biosynthesis amenable to treatment via the uridine salvage pathway. We further define the genotype and phenotype with a focus on treatment. METHODS: Retrospective case series of 20 patients. RESULTS: Our study confirms CAD deficiency as a progressive EIEE with recurrent status epilepticus, loss of skills, and dyserythropoietic anemia. We further refine the phenotype by reporting a movement disorder as a frequent feature, and add that milder courses with isolated developmental delay/intellectual disability can occur as well as onset with neonatal seizures. With no biomarker available, the diagnosis relies on genetic testing and functional validation in patient-derived fibroblasts. Underlying pathogenic variants are often rated as variants of unknown significance, which could lead to underrecognition of this treatable disorder. Supplementation with uridine, uridine monophosphate, or uridine triacetate in ten patients was safe and led to significant clinical improvement in most patients. CONCLUSION: We advise a trial with uridine (monophosphate) in all patients with developmental delay/intellectual disability, epilepsy, and anemia; all patients with status epilepticus; and all patients with neonatal seizures until (genetically) proven otherwise or proven unsuccessful after 6 months. CAD deficiency might represent a condition for genetic newborn screening.
Asunto(s)
Epilepsia , Espasmos Infantiles , Suplementos Dietéticos , Humanos , Recién Nacido , Estudios Retrospectivos , UridinaRESUMEN
BACKGROUND: Metabolomic profiling may have diagnostic and prognostic value in heart failure. This study investigated whether targeted blood and urine metabolomics reflects disease severity in patients with nonischemic dilated cardiomyopathy (DCM) and compared its incremental value on top of N-terminal prohormone of brain natriuretic peptide (NT-proBNP). METHODS AND RESULTS: A total of 149 metabolites were measured in plasma and urine samples of 273 patients with DCM and with varying stages of disease (patients with DCM and normal left ventricular reverse remodeling, nâ¯=â¯70; asymptomatic DCM, nâ¯=â¯72; and symptomatic DCM, nâ¯=â¯131). Acylcarnitines, sialic acid and glutamic acid are the most distinctive metabolites associated with disease severity, as repeatedly revealed by unibiomarker linear regression, sparse partial least squares discriminant analysis, random forest, and conditional random forest analyses. However, the absolute difference in the metabolic profile among groups was marginal. A decision-tree model based on the top metabolites did not surpass NT-proBNP in classifying stages. However, a combination of NT-proBNP and the top metabolites improved the decision tree to distinguish patients with DCM and left ventricular reverse remodeling from symptomatic DCM (area under the curve 0.813 ± 0.138 vs 0.739 ± 0.114; Pâ¯=â¯0.02). CONCLUSION: Functional cardiac recovery is reflected in metabolomics. These alterations reveal potential alternative treatment targets in advanced symptomatic DCM. The metabolic profile can complement NT-proBNP in determining disease severity in nonischemic DCM.
Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Cardiomiopatía Dilatada/diagnóstico , Humanos , Metabolómica , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Índice de Severidad de la Enfermedad , Remodelación VentricularRESUMEN
Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.
Asunto(s)
Galactosemias/genética , Galactosemias/fisiopatología , Animales , Modelos Animales de Enfermedad , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosa/metabolismo , Galactosemias/metabolismo , Galactosemias/terapia , Genotipo , Humanos , Estrés Oxidativo , Fenotipo , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismoRESUMEN
Nucleotide sugars (NS) are fundamental molecules in life and play a key role in glycosylation reactions and signal conduction. Several pathways are involved in the synthesis of NS. The Leloir pathway, the main pathway for galactose metabolism, is crucial for production of uridine diphosphate (UDP)-glucose and UDP-galactose. The most common metabolic disease affecting this pathway is galactose-1-phosphate uridylyltransferase (GALT) deficiency, that despite a lifelong galactose-restricted diet, often results in chronically debilitating complications. Alterations in the levels of UDP-sugars leading to galactosylation abnormalities have been hypothesized as a key pathogenic factor. However, UDP-sugar levels measured in patient cell lines have shown contradictory results. Other NS that might be affected, differences throughout development, as well as tissue specific profiles have not been investigated. Using recently established UHPLC-MS/MS technology, we studied the complete NS profiles in wildtype and galt knockout zebrafish (Danio rerio). Analyses of UDP-hexoses, UDP-hexosamines, CMP-sialic acids, GDP-fucose, UDP-glucuronic acid, UDP-xylose, CDP-ribitol, and ADP-ribose profiles at four developmental stages and in tissues (brain and gonads) in wildtype zebrafish revealed variation in NS levels throughout development and differences between examined tissues. More specifically, we found higher levels of CMP-N-acetylneuraminic acid, GDP-fucose, UDP-glucuronic acid, and UDP-xylose in brain and of CMP-N-glycolylneuraminic acid in gonads. Analysis of the same NS profiles in galt knockout zebrafish revealed no significant differences from wildtype. Our findings in galt knockout zebrafish, even when challenged with galactose, do not support a role for abnormalities in UDP-glucose or UDP-galactose as a key pathogenic factor in GALT deficiency, under the tested conditions.
Asunto(s)
Galactosa/metabolismo , Galactosemias/enzimología , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/deficiencia , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , Animales , Femenino , Galactosemias/genética , Cinética , Masculino , Espectrometría de Masas en Tándem , Pez CebraRESUMEN
6-mercaptopurine (6-MP) is the mainstay in pediatric acute lymphoblastic leukemia (ALL) maintenance treatment. Variants in genes coding for thiopurine S-methyl transferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) are known to influence 6-MP metabolism. We determined TPMT and ITPA genotype and enzyme activity and the mean 6-MP doses during maintenance treatment in 40 children treated for ALL according to the Dutch Childhood Oncology Group (DCOG)-ALL11 protocol in the Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands. Patients with genetic variants in TPMT (N=3) had significantly lower TPMT enzyme activity (mean 0.46 vs. 0.72 µmol/mmol hemoglobin/h, P=0.005). Although the difference was not statistically significant, they were treated with lower mean 6-MP doses (28.1 mg/m [SD 25.5 mg/m] vs. 41.3 mg/m [SD 17.2 mg/m], P=0.375). In patients with genetic ITPA variants (N=21), ITPA enzyme activity was significantly lowered (mean 3.67 vs. 6.84 mmol/mmol hemoglobin/h, P<0.0005). The mean 6-MP doses did not differ between patients with and without variants in ITPA (40.0 mg/m [SD 20.3 mg/m] vs. 40.6 mg/m [SD 14.9 mg/m], P=0.663). The TPMT genotype, but not the ITPA genotype, should be considered as part of standard evaluation before starting ALL maintenance treatment.
Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Mercaptopurina/administración & dosificación , Metiltransferasas/genética , Polimorfismo Genético , Medicina de Precisión , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirofosfatasas/genética , Biomarcadores de Tumor/genética , Niño , Etnicidad , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Estudios RetrospectivosRESUMEN
Objectives: Abacavir use has been associated with an increased risk of cardiovascular disease (CVD) and metabolic events in HIV-infected patients, although this finding was not consistently found. It is unclear whether abacavir only increases this risk in subpopulations of HIV-infected patients. It may be hypothesized that inosine 5'-triphosphate pyrophosphohydrolase (ITPase), an enzyme involved in the metabolism of purine analogues used in HIV treatment, plays a role in the risk of CVD and metabolic events in HIV-infected patients. Methods: ITPase activity and ITPA genotype were determined in 393 HIV-infected patients. ITPase activity <4 mmol IMP/mmol Hb/h was considered decreased. ITPA polymorphisms tested were: c.94C>A (rs1127354) and c.124â+â21A>C (rs7270101). ORs were determined using generalized estimating equation models for developing CVD in patients who had ever been exposed to abacavir, tenofovir or didanosine and for developing metabolic events in patients currently using these drugs. Results: In patients using abacavir, metabolic events were associated with ITPase activity. No association was demonstrated for tenofovir or didanosine. The OR for metabolic events was 3.11 in patients using abacavir with normal ITPase activity (95% CI 1.34-7.21; P = 0.008) compared with patients with decreased ITPase activity [adjusted for age, BMI, cumulative duration of combination ART (cART) use and the use of PI and NNRTI]. CVD was not associated with ITPase activity or ITPA genotype. Conclusions: This study shows, for the first time, that ITPase activity is associated with the occurrence of metabolic events in patients using abacavir. Further studies are needed to confirm this association and to elucidate the possible mechanism.
Asunto(s)
Didesoxinucleósidos/efectos adversos , Eritrocitos/enzimología , Infecciones por VIH/tratamiento farmacológico , Hipercolesterolemia/epidemiología , Hipertensión/epidemiología , Pirofosfatasas/metabolismo , Inhibidores de la Transcriptasa Inversa/efectos adversos , Adulto , Anciano , Diabetes Mellitus/epidemiología , Didanosina/efectos adversos , Didanosina/uso terapéutico , Didesoxinucleósidos/uso terapéutico , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Pirofosfatasas/genética , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Tenofovir/efectos adversos , Tenofovir/uso terapéuticoRESUMEN
Aims: Truncating titin variants (TTNtv) are the most prevalent genetic cause of dilated cardiomyopathy (DCM). We aim to study clinical parameters and long-term outcomes related to the TTNtv genotype and determine the related molecular changes at tissue level in TTNtv DCM patients. Methods and results: A total of 303 consecutive and extensively phenotyped DCM patients (including cardiac imaging, Holter monitoring, and endomyocardial biopsy) underwent DNA sequencing of 47 cardiomyopathy-associated genes including TTN, yielding 38 TTNtv positive (13%) patients. At long-term follow-up (median of 45 months, up to 12 years), TTNtv DCM patients had increased ventricular arrhythmias compared to other DCM, but a similar survival. Arrhythmias are especially prominent in TTNtv patients with an additional environmental trigger (i.e. virus infection, cardiac inflammation, systemic disease, toxic exposure). Importantly, cardiac mass is reduced in TTNtv patients, despite similar cardiac function and dimensions at cardiac magnetic resonance. These enhanced life-threatening arrhythmias and decreased cardiac mass in TTNtv DCM patients go along with significant cardiac energetic and matrix alterations. All components of the mitochondrial electron transport chain are significantly upregulated in TTNtv hearts at RNA-sequencing. Also, interstitial fibrosis was augmented in TTNtv patients at histological and transcript level. Conclusion: Truncating titin variants lead to pronounced cardiac alterations in mitochondrial function, with increased interstitial fibrosis and reduced hypertrophy. Those structural and metabolic alterations in TTNtv hearts go along with increased ventricular arrhythmias at long-term follow-up, with a similar survival and overall cardiac function.
Asunto(s)
Cardiomiopatías , Conectina , Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Conectina/genética , Conectina/metabolismo , Conectina/fisiología , Fibrosis/metabolismo , Humanos , Mitocondrias/metabolismoRESUMEN
OBJECTIVE: Fluoropyrimidine treatment can be optimized based on dihydropyrimidine dehydrogenase (DPD) activity. DPD dysfunction leads to increased exposure to active metabolites, which can result in severe or even fatal toxicity. METHODS: We provide an overview of 8 years of DPD diagnostic testing (nâ¯=â¯1194). RESULTS: Within the study period, our diagnostic test evolved from a single-enzyme measurement using first a radiochemical and then a nonradiochemical assay by ultra HPLC-MS in peripheral blood mononuclear cells with uracil, to a combined enzymatic and genetic test (ie, polymerase chain reaction) followed by Sanger sequence analysis of 4 variants of the DPYD gene (ie, DPYD*2A, DPYD*13, c.2846A>T, and 1129-5923C>G; allele frequencies 0.58%, 0.03%, 0.29%, and 1.35%, respectively). Patients who have 1 of the 4 variants tested (nâ¯=â¯814) have lower enzyme activity than the overall patient group. The majority of patients with the DPYD*2A variant (83%) consistently showed decreased enzyme activity. Only 24 (25.3%) of 95 patients (tested for 4 variants) with low enzyme activity carried a variant. Complete DPYD sequencing in a subgroup with low enzyme activity and without DPYD*2A variant (nâ¯=â¯47) revealed 10 genetic variants, of which 4 have not been described previously. We did not observe a strong link between DPYD genotype and enzyme activity. CONCLUSIONS: Previous studies have shown that DPD status should be determined before treatment with fluoropyrimidine agents to prevent unnecessary side effects with possible fatal consequences. Our study in combination with literature shows that there is a discrepancy between the DPD enzyme activity and the presence of clinically relevant single nucleotide polymorphisms. At this moment, a combination of a genetic and enzyme test is preferable for diagnostic testing. (Curr Ther Res Clin Exp. 2018; 79:XXX-XXX).
RESUMEN
The postprandial rise in essential amino acid (EAA) concentrations modulates the increase in muscle protein synthesis rates after protein ingestion. The EAA content and AA composition of the dietary protein source contribute to the differential muscle protein synthetic response to the ingestion of different proteins. Lower EAA contents and specific lack of sufficient leucine, lysine, and/or methionine may be responsible for the lower anabolic capacity of plant-based compared with animal-based proteins. We compared EAA contents and AA composition of a large selection of plant-based protein sources with animal-based proteins and human skeletal muscle protein. AA composition of oat, lupin, wheat, hemp, microalgae, soy, brown rice, pea, corn, potato, milk, whey, caseinate, casein, egg, and human skeletal muscle protein were assessed using UPLC-MS/MS. EAA contents of plant-based protein isolates such as oat (21%), lupin (21%), and wheat (22%) were lower than animal-based proteins (whey 43%, milk 39%, casein 34%, and egg 32%) and muscle protein (38%). AA profiles largely differed among plant-based proteins with leucine contents ranging from 5.1% for hemp to 13.5% for corn protein, compared to 9.0% for milk, 7.0% for egg, and 7.6% for muscle protein. Methionine and lysine were typically lower in plant-based proteins (1.0 ± 0.3 and 3.6 ± 0.6%) compared with animal-based proteins (2.5 ± 0.1 and 7.0 ± 0.6%) and muscle protein (2.0 and 7.8%, respectively). In conclusion, there are large differences in EAA contents and AA composition between various plant-based protein isolates. Combinations of various plant-based protein isolates or blends of animal and plant-based proteins can provide protein characteristics that closely reflect the typical characteristics of animal-based proteins.
Asunto(s)
Aminoácidos/análisis , Alimentos Funcionales/análisis , Proteínas de Vegetales Comestibles/química , Aminoácidos Esenciales/análisis , Cromatografía Liquida , Humanos , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Espectrometría de Masas en TándemRESUMEN
Classic galactosemia is a genetic disorder of galactose metabolism, caused by severe deficiency of galactose-1-phosphate uridylyltransferase (GALT) enzyme activity due to mutations of the GALT gene. Its pathogenesis is still not fully elucidated, and a therapy that prevents chronic impairments is lacking. In order to move research forward, there is a high need for a novel animal model, which allows organ studies throughout development and high-throughput screening of pharmacologic compounds. Here, we describe the generation of a galt knockout zebrafish model and present its phenotypical characterization. Using a TALEN approach, a galt knockout line was successfully created. Accordingly, biochemical assays confirm essentially undetectable galt enzyme activity in homozygotes. Analogous to humans, galt knockout fish accumulate galactose-1-phosphate upon exposure to exogenous galactose. Furthermore, without prior exposure to exogenous galactose, they exhibit reduced motor activity and impaired fertility (lower egg quantity per mating, higher number of unsuccessful crossings), resembling the human phenotype(s) of neurological sequelae and subfertility. In conclusion, our galt knockout zebrafish model for classic galactosemia mimics the human phenotype(s) at biochemical and clinical levels. Future studies in our model will contribute to improved understanding and management of this disorder.
Asunto(s)
Fertilidad , Galactosemias/complicaciones , Infertilidad/etiología , Actividad Motora , Enfermedades del Sistema Nervioso/etiología , UTP-Hexosa-1-Fosfato Uridililtransferasa/deficiencia , Proteínas de Pez Cebra/deficiencia , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Fertilidad/genética , Galactosemias/enzimología , Galactosemias/genética , Predisposición Genética a la Enfermedad , Infertilidad/enzimología , Infertilidad/genética , Infertilidad/fisiopatología , Actividad Motora/genética , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Fenotipo , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Since organic acid analysis in urine with gaschromatography-mass spectrometry (GC-MS) is a time-consuming technique, we developed a new liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) method to replace the classical analysis for diagnosis of inborn errors of metabolism (IEM). Sample preparation is simple and experimental time short. Targeted mass extraction and automatic calculation of z-scores generated profiles characteristic for the IEMs in our panel consisting of 71 biomarkers for defects in amino acids, neurotransmitters, fatty acids, purine, and pyrimidine metabolism as well as other disorders. In addition, four medication-related metabolites were included in the panel. The method was validated to meet Dutch NEN-EN-ISO 15189 standards. Cross validation of 24 organic acids from 28 urine samples of the ERNDIM scheme showed superiority of the UPLC-QTOF/MS method over the GC-MS method. We applied our method to 99 patient urine samples with 32 different IEMs, and 88 control samples. All IEMs were unambiguously established/diagnosed using this new QTOF method by evaluation of the panel of 71 biomarkers. In conclusion, we present a LC-QTOF/MS method for fast and accurate quantitative organic acid analysis which facilitates screening of patients for IEMs. Extension of the panel of metabolites is easy which makes this application a promising technique in metabolic diagnostics/laboratories.