Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 24(5): 867-76, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26857842

RESUMEN

We previously reported that subretinal injection of AAV2/5 RK.cpde6ß allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6ß deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Terapia Genética/métodos , Degeneración Retiniana/terapia , Células Fotorreceptoras Retinianas Bastones/patología , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/deficiencia , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Vectores Genéticos/administración & dosificación , Humanos , Retina/fisiopatología , Degeneración Retiniana/genética , Degeneración Retiniana/patología
2.
iScience ; 26(2): 106031, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824281

RESUMEN

The hologenome concept considers the entity formed by a host and its microbiota, the holobiont, as new level of hierarchical organization subject to neutral and selective forces. We used grafted plants to formally evaluate the hologenome concept. We analyzed the root-endosphere microbiota of two independent watermelon and grapevine plant systems, including ungrafted and reciprocal-grafting combinations. Grafted and ungrafted hosts harbor markedly different microbiota compositions. Furthermore, the results indicate a non-random assembly of bacterial communities inhabiting the root endosphere of chimeric plants with interactive effect of both the rootstock and scion on the recruitment of microorganisms. Because chimeric plants did not have a random microbiota, the null hypothesis that holobionts assemble randomly and hologenome concept is an intellectual construction only can be rejected. The study supports the relevance of hologenome as biological level of organization and opens new avenues for a better fundamental understanding of plants as holobionts.

3.
Plant Environ Interact ; 2(5): 235-248, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37284513

RESUMEN

Modern plant breeding and agrosystems artificialization could have altered plants' ability to filter and recruit beneficial microorganisms in its microbiota. Thus, compared to modern cultivars, we hypothesized that root-endosphere microbiota in modern wheat cultivars are less resistant to colonization by fungi and bacteria and thus more susceptible to also recruit more pathogens. We used an in-field experimental design including six wheat varieties (three ancient vs. three modern) grown in monoculture and in mixture (three replicates each). Endospheric microbiota of wheat roots were analyzed on four individuals sampled randomly in each plot. Composition-based clustering of sequences was then characterized from amplicon mass-sequencing. We show that the bacterial and fungal microbiota composition in wheat roots differed between ancient and modern wheat cultivar categories. However, the responses observed varied with the group considered. Modern cultivars harbored higher richness of bacterial and fungal pathogens than ancient cultivars. Both cultivar types displayed specific indicator species. A synergistic effect was identified in mixtures of modern cultivars with a higher root endospheric mycobiota richness than expected from a null model. The present study shows the effect of plant breeding on the microbiota associated plant roots. The results call for making a diagnosis of the cultivar's endospheric-microbiota composition. These new results also suggest the importance of a holobiont-vision while considering plant selection in crops and call for better integration of symbiosis in the development of next-generation agricultural practices.

4.
Ecology ; 101(4): e02976, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31944273

RESUMEN

Dispersal limitation may drive the structure of fungal microbiota of plant roots at small spatial scales. Fungal root microorganisms disperse through the plant rooting systems from hosts to hosts. Due to a pronounced host-preference effect, the composition of endophytic root microbiota may follow plant distribution. A given plant community may hence include a matrix of host-plant species that represent various habitat permeabilities to fungal dispersal in the floristic landscape. We experimentally tested the effect of host-plant isolation on endophytic fungal assemblages (Ascomycota, Basidiomycota, Glomeromycotina) inhabiting Brachypodium pinnatum roots. We calculated host-plant isolation using Euclidean distance (distance-based dispersal limitation) and resistance distance (functional-based dispersal limitation), based on host presences. All fungal groups were more influenced by the resistance distance between B. pinnatum than by the Euclidean distance. Fungal dispersal was hence strongly related to the spatial distribution of the host plants. The fungal groups displayed however different responses (in richness, abundance, and composition) to host isolation. Additionally, fungal assemblages were more strongly controlled by the degree of connectivity between host plants during the prior year than by current connectivity. This discrepancy may be due to changes in plant species coverage in a year and/or to the delay of dispersal response of fungi. This study it the first to demonstrate how small-scale host-plant distributions mediate connectivity in microorganisms. The consequences of plant distributions for the permeability of the floristic landscape to fungi dispersal appear to control fungal assemblages, but with possibly different mechanisms for the different fungal groups.


Asunto(s)
Ascomicetos , Basidiomycota , Brachypodium , Microbiota , Basidiomycota/genética , Biodiversidad , ADN de Hongos , Hongos/genética , Raíces de Plantas , Microbiología del Suelo
5.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32149354

RESUMEN

Fe-oxidizing bacteria of the family Gallionellaceae are major players in the Fe biogeochemical cycle in freshwater. These bacteria thrive in redox transition zones where they benefit from both high Fe concentrations and microaerobic conditions. We analysed the Gallionellaceae genomic diversity in an artesian hard-rock aquifer where redox transition zones develop (i) in the subsurface, where ancient, reduced groundwater mixes with recent oxygenated groundwater, and (ii) at the surface, where groundwater reaches the open air. A total of 15 new draft genomes of Gallionellaceae representing to 11 candidate genera were recovered from the two redox transition zones. Sulfur oxidation genes were encoded in most genomes while denitrification genes were much less represented. One genus dominated microbial communities belowground and we propose to name it 'Candidatus Houarnoksidobacter'. The two transition zones were populated by completely different assemblages of Gallionellaceae despite the almost constant upward circulation of groundwater between the two zones. The processes leading to redox transition zones, oxygen diffusion at the surface or groundwater mixing in subsurface, appear to be a major driver of the Gallionellaceae diversity.


Asunto(s)
Gallionellaceae , Agua Subterránea , Bacterias/genética , Agua Dulce , Gallionellaceae/genética , Oxidación-Reducción
6.
Microbiome ; 6(1): 79, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29695286

RESUMEN

BACKGROUND: Plants are colonized by a great diversity of microorganisms which form a microbiota and perform additional functions for their host. This microbiota can thus be considered a toolbox enabling plants to buffer local environmental changes, with a positive influence on plant fitness. In this context, the transmission of the microbiota to the progeny represent a way to ensure the presence of beneficial symbionts within the habitat. Examples of such transmission have been mainly described for seed transmission and concern a few pathogenic microorganisms. We investigated the transmission of symbiotic partners to plant progeny within clonal plant network. METHODS: We used the clonal plant Glechoma hederacea as plant model and forced newly emitted clonal progeny to root in separated pots while controlling the presence of microorganisms. We used an amplicon sequencing approach of 16S and 18S rRNA targeting bacteria/archaea and fungi respectively to describe the root microbiota of mother and clonal-plant offspring. RESULTS: We demonstrated the vertical transmission of a significant proportion of the mother plants' symbiotic bacteria and fungi to the daughters. Interestingly, archaea were not transmitted to the daughter plants. Transmitted communities had lower richness, suggesting a filtration during transmission. We found that the transmitted pool of microorganisms was similar among daughters, constituting the heritability of a specific cohort of microorganisms, opening a new understanding of the plant holobiont. We also found significant effects of distance to the mother plant and of growth time on the richness of the microbiota transmitted. CONCLUSIONS: In this clonal plant, microorganisms are transmitted between individuals through connections, thereby ensuring the availability of microbe partners for the newborn plants as well as the dispersion between hosts for the microorganisms. This previously undescribed ecological process allows the dispersal of microorganisms in space and across plant generations. As the vast majority of plants are clonal, this process might be therefore a strong driver of ecosystem functioning and assembly of plant and microorganism communities in a wide range of ecosystems.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Lamiaceae/microbiología , Microbiota/genética , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/genética , Hongos/aislamiento & purificación , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Microbiología del Suelo , Simbiosis
7.
Hum Gene Ther Methods ; 27(3): 122-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27229628

RESUMEN

Recombinant adeno-associated virus (AAV) has emerged as a promising vector for retinal gene delivery to restore visual function in certain forms of inherited retinal dystrophies. Several studies in rodent models have shown that intravitreal injection of the AAV2/2 vector is the optimal route for efficient retinal ganglion cell (RGC) transduction. However, translation of these findings to larger species, including humans, is complicated by anatomical differences in the eye, a key difference being the comparatively smaller volume of the vitreous chamber in rodents. Here, we address the role of the vitreous body as a potential barrier to AAV2/2 diffusion and transduction in the RGCs of dogs and macaques, two of the most relevant preclinical models. We intravitreally administered the AAV2/2 vector carrying the CMV-eGFP reporter cassette in dog and macaque eyes, either directly into the vitreous chamber or after complete vitrectomy, a surgical procedure that removes the vitreous body. Our findings suggest that the vitreous body appears to trap the injected vector, thus impairing the diffusion and transduction of AAV2/2 to inner retinal neurons. We show that vitrectomy before intravitreal vector injection is an effective means of overcoming this physical barrier, improving the transduction of RGCs in dog and macaque retinas. These findings support the use of vitrectomy in clinical trials of intravitreal gene transfer techniques targeting inner retinal neurons.


Asunto(s)
Terapia Genética , Vectores Genéticos/uso terapéutico , Células Ganglionares de la Retina , Animales , Dependovirus/genética , Perros , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes , Humanos , Inyecciones Intravítreas , Macaca , Retina/patología , Retina/trasplante , Transducción Genética , Vitrectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA