Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682677

RESUMEN

BACKGROUND: Bisphosphonates are widely employed drugs for the treatment of pathologies with high bone resorption, such as osteoporosis, and display a great affinity for calcium ions and apatitic substrates. Here, we aimed to investigate the potentiality of zoledronate functionalized hydroxyapatite nanocrystals (HAZOL) to promote bone regeneration by stimulating adhesion, viability, metabolic activity and osteogenic commitment of human bone marrow derived mesenchymal stromal cells (hMSCs). METHODS: we adopted an advanced three-dimensional (3D) in vitro fracture healing model to study porous scaffolds: hMSCs were seeded onto the scaffolds that, after three days, were cut in halves and unseeded scaffolds were placed between the two halves. Scaffold characterization by X-ray diffraction, transmission and scanning electron microscopy analyses and cell morphology, viability, osteogenic differentiation and extracellular matrix deposition were evaluated after 3, 7 and 10 days of culture. RESULTS: Electron microscopy showed a porous and interconnected structure and a uniform cell layer spread onto scaffolds. Scaffolds were able to support cell growth and cells progressively colonized the whole inserts in absence of cytotoxic effects. Osteogenic commitment and gene expression of hMSCs were enhanced with higher expressions of ALPL, COL1A1, BGLAP, RUNX2 and Osterix genes. CONCLUSION: Although some limitations affect the present study (e.g., the lack of longer experimental times, of mechanical stimulus or pathological microenvironment), the obtained results with the adopted experimental setup suggested that zoledronate functionalized scaffolds (GHAZOL) might sustain not only cell proliferation, but positively influence osteogenic differentiation and activity if employed in bone fracture healing.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Médula Ósea , Células de la Médula Ósea , Regeneración Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Ácido Zoledrónico/farmacología
2.
J Cell Physiol ; 234(11): 20046-20056, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30950062

RESUMEN

Despite alternatives to autogenous bone graft for spinal fusion have been investigated, it has been shown that osteoconductive materials alone do not give a rate of fusion comparable with autogenous bone. This study analyzed a strontium substituted ß-tricalcium phosphate (Sr-ßTCP) associated with syngeneic, unexpanded, and undifferentiated mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ADSC) as a new tissue engineering approach for spinal fusion procedures. A posterolateral fusion was performed in 15 ovariectomized (OVX) and 15 sham-operated (SHAM) Inbred rats. Both SHAM and OVX animals were divided into three groups: Sr-ßTCP, Sr-ßTCP + BMCSs, and Sr-ßTCP + ADSCs. Animals were euthanized 8 weeks after surgery and the spines evaluated by manual palpation, micro-CT, and histology. For both SHAM and OVX animals, the fusion tissue in the Sr-ßTCP + BMSCs group was more solid. This effect was significantly higher in OVX animals by comparing the Sr-ßTCP + BMCSs group with Sr-ßTCP + ADSCs. Radiographical score, based on micro-CT 2D image, highlighted that the Sr-ßTCP + BMCSs group presented a similar fusion to Sr-ßTCP and higher than Sr-ßTCP + ADSCs in both SHAM and OVX animals. Micro-CT 3D parameters did not show significant differences among groups. Histological score showed significantly higher fusion in Sr-ßTCP + BMSCs group than Sr-ßTCP and Sr-ßTCP + ADSCs, for both SHAM and OVX animals. In conclusion, our results suggest that addition of BMSCs to a Sr-ßTCP improve bone formation and fusion, both in osteoporotic and nonosteoporotic animal, whereas spinal fusion is not enhanced in rats treated with Sr-ßTCP + ADSCs. Thus, for conducting cells therapy in spinal surgery BMSCs still seems to be a better choice compared with ADSCs.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Fosfatos de Calcio/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Estroncio/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Femenino , Vértebras Lumbares/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas/métodos , Osteoporosis/tratamiento farmacológico , Ovariectomía/métodos , Ratas , Fusión Vertebral/métodos , Ingeniería de Tejidos/métodos
3.
Molecules ; 24(10)2019 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-31109143

RESUMEN

3D cylindrical layered scaffolds with anisotropic mechanical properties were prepared according to a new and simple method, which involves gelatin foaming, deposition of foamed strips, in situ crosslinking, strip rolling and lyophilization. Different genipin concentrations were tested in order to obtain strips with different crosslinking degrees and a tunable stability in biological environment. Before lyophilization, the strips were curled in a concentric structure to generate anisotropic spiral-cylindrical scaffolds. The scaffolds displayed significantly higher values of stress at break and of the Young modulus in compression along the longitudinal than the transverse direction. Further improvement of the mechanical properties was achieved by adding strontium-substituted hydroxyapatite (Sr-HA) to the scaffold composition and by increasing genipin concentration. Moreover, composition modulated also water uptake ability and degradation behavior. The scaffolds showed a sustained strontium release, suggesting possible applications for the local treatment of abnormally high bone resorption. This study demonstrates that assembly of layers of different composition can be used as a tool to obtain scaffolds with modulated properties, which can be loaded with drugs or biologically active molecules providing properties tailored upon the needs.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Módulo de Elasticidad , Hidroxiapatitas/química , Estroncio/administración & dosificación , Andamios del Tejido/química , Anisotropía , Huesos/cirugía , Reactivos de Enlaces Cruzados/química , Liberación de Fármacos , Gelatina/química , Cinética , Estroncio/química , Ingeniería de Tejidos/métodos
4.
Langmuir ; 32(1): 188-94, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26646551

RESUMEN

The possibility to functionalize calcium phosphates with bioactive agents is a promising strategy to design innovative biomaterials for bone repair able to couple the bioactive properties of the inorganic compounds with the therapeutic effect of the functionalizing agent. The R enantiomer of the 9-hydroxystearic acid, (9R)-9-HSA, produced from Dimorphotheca sinuata L. seeds, has proven to act as a natural negative regulator of tumor cell proliferation. On this basis, hydroxyapatite was synthesized with increasing contents of (9R)-9-hydroxystearate, up to ∼8.6 wt %. The incorporation of HSA in the composite nanocrystals induces a reduction of the crystal mean dimensions and of the length of the coherently scattering crystalline domains, which suggest a preferential adsorption onto the hydroxyapatite crystal faces parallel to the c-axis direction. The composite nanocrystals were designed so that their cytostatic and cytotoxic effects toward osteosarcoma cells were modulated by hydroxystearate content. In fact, results of in vitro tests show that the presence of HSA in the composite nanocrystals provokes a significant decrease in SaOS2 osteosarcoma cells proliferation and viability as well as an increase in lactate dehydrogenase, tumor necrosis factor α, and caspase 3 levels, with a cytotoxic effect increasing with HSA content in the nanocrystals.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Durapatita/química , Ácidos Esteáricos/química , Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Nanopartículas/química
5.
J Mater Sci Mater Med ; 26(2): 69, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25631265

RESUMEN

Sterilization through γ-irradiation has been reported to affect collagen mechanical properties, but its possible effects on gelatin based materials have not been investigated up to now. Herein we report the results of a mechanical, chemical and thermal study performed on gelatin films before and after γ-irradiation. The investigation was performed on uncrosslinked films as well as on crosslinked films. To this aim, two common crosslinking agents, glutaraldehyde and genipin, at different concentration (0.15, 0.30 and 0.67%) were used. The results indicate that sterilization significantly affects the mechanical properties of uncrosslinked films, whereas it displays a modest effect on gelatin swelling, release in solution, thermal stability and molecular structure. Both glutaraldehyde and genipin enhance the mechanical properties and stability in solution of the gelatin films. In particular, the values of Young modulus increase as a function of crosslinker concentration up to about 10 and 18 MPa for genipin and glutaraldehyde treated samples respectively. The results of in vitro study demonstrate that the films crosslinked with genipin do not display any cytotoxic reaction, whereas glutaraldehyde crosslinking provokes an acute and dose dependent cytotoxic effect.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Gelatina/química , Glutaral/química , Iridoides/química , Membranas Artificiales , Esterilización/métodos , Reactivos de Enlaces Cruzados/efectos de la radiación , Módulo de Elasticidad/efectos de la radiación , Rayos gamma , Gelatina/efectos de la radiación , Glutaral/efectos de la radiación , Iridoides/efectos de la radiación , Ensayo de Materiales , Dosis de Radiación , Estrés Mecánico , Resistencia a la Tracción/efectos de la radiación
6.
J Mater Sci Mater Med ; 25(10): 2313-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24664673

RESUMEN

Collagen electrospun scaffolds well reproduce the structure of the extracellular matrix (ECM) of natural tissues by coupling high biomimetism of the biological material with the fibrous morphology of the protein. Structural properties of collagen electrospun fibers are still a debated subject and there are conflicting reports in the literature addressing the presence of ultrastructure of collagen in electrospun fibers. In this work collagen type I was successfully electrospun from two different solvents, trifluoroethanol (TFE) and dilute acetic acid (AcOH). Characterization of collagen fibers was performed by means of SEM, ATR-IR, Circular Dichroism and WAXD. We demonstrated that collagen fibers contained a very low amount of triple helix with respect to pristine collagen (18 and 16% in fibers electrospun from AcOH and TFE, respectively) and that triple helix denaturation occurred during polymer dissolution. Collagen scaffolds were crosslinked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a commonly employed crosslinker for electrospun collagen, and 1,4-butanediol diglycidyl ether (BDDGE), that was tested for the first time in this work as crosslinking agent for collagen in the form of electrospun fibers. We demonstrated that BDDGE successfully crosslinked collagen and preserved at the same time the scaffold fibrous morphology, while scaffolds crosslinked with EDC completely lost their porous structure. Mesenchymal stem cell experiments demonstrated that collagen scaffolds crosslinked with BDDGE are biocompatible and support cell attachment.


Asunto(s)
Colágeno/química , Reactivos de Enlaces Cruzados/farmacología , Nanofibras/química , Solventes/farmacología , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Butileno Glicoles , Células Cultivadas , Colágeno/efectos de los fármacos , Estabilidad de Medicamentos , Galvanoplastia/métodos , Matriz Extracelular/química , Ensayo de Materiales , Conejos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
7.
Gels ; 10(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38920900

RESUMEN

Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 nanoparticles were loaded on gelatin films at two different pH values, namely, 4 and 7. The values of swelling and solubility of functionalized films displayed a reduction of around 50% in comparison to those of pristine, unloaded films. In agreement, WO3 nanoparticles provoked a significant decrease in water vapor permeability, whereas the decrease in the values of elastic modulus (from about 2.0 to 0.7 MPa) and stress at break (from about 2.5 to 1.4 MPa) can be ascribed to the discontinuity created by the nanoparticles inside the films. The results of differential scanning calorimetry and X-ray diffraction analysis suggest that interaction of PVP with gelatin reduce gelatin renaturation. No significant differences were found between the samples prepared at pH 4 and 7, whereas crosslinking with glutaraldehyde greatly influenced the properties of gelatin films. Moreover, the incorporation of WO3 nanoparticles in gelatin films, especially in the absence of glutaraldehyde, conferred excellent photochromic properties, inducing the appearance of an intense blue color after a few seconds of light irradiation and providing good resistance to several irradiation cycles.

8.
Colloids Surf B Biointerfaces ; 243: 114154, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39137528

RESUMEN

This work investigated the range of substitution of two biologically relevant ions, namely Mn2+ and Co2+, into the structure of ß-tricalcium phosphate, as well as their influence on bone cells response. To this aim, ß-TCP was synthesized by solid state reaction in the presence of increasing amount of the substituent ions. The results of the X-ray diffraction analysis reveal that just limited amounts of these ions can enter into the ß-TCP structure: 15 at% and 20 at% for cobalt and manganese, respectively. Substitution provokes aggregation of the micrometric particles and reduction of the lattice constants. In particular, the dimension of the c-parameter exhibits a discontinuity at about 10 at% for both cations, although with different trend. Moreover, Rietveld refinement demonstrates a clear preference of both manganese and cobalt for the octahedral site (V). The influence of these ions on cell response was tested on osteoblast, osteoclast and endothelial cells. The results indicate that the presence of manganese promotes a good osteoblast viability, significantly enhances the expression of osteoblast key genes and the angiogenic process of endothelial cells, while inhibiting osteoclast resorption. At variance, osteoblast viability appears reduced in the presence of Co samples, on which osteoblast genes reach higher expression than on ß-TCP just in a few cases. On the other hand, the results clearly show that cobalt significantly stimulates the angiogenic process and inhibits osteoclast resorption.

9.
Biomater Adv ; 163: 213968, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059113

RESUMEN

Strontium, cobalt, and manganese ions are present in the composition of bone and useful for bone metabolism, even when combined with calcium phosphate in the composition of biomaterials. Herein we explored the possibility to include these ions in the composition of apatitic materials prepared through the cementitious reaction between ion-substituted calcium phosphate dibasic dihydrate, CaHPO4·2H2O (DCPD) and tetracalcium phosphate, Ca4(PO4)2O (TTCP). The results of the chemical, structural, morphological and mechanical characterization indicate that cobalt and manganese exhibit a greater delaying effect than strontium (about 15 at.%) on the cementitious reaction, even though they are present in smaller amounts within the materials (about 0.8 and 4.5 at.%, respectively). Furthermore, the presence of the foreign ions in the apatitic materials leads to a slight reduction of porosity and to enhancement of compressive strength. The results of biological tests show that the presence of strontium and manganese, as well as calcium, in the apatitic materials cultured in direct contact with human mesenchymal stem cells (hMSCs) stimulates their viability and activity. In contrast, the apatitic material containing cobalt exhibits a lower metabolic activity. All the materials have a positive effect on the expression of Vascular Endothelial Growth Factor (VEGF) and Von Willebrand Factor (vWF). Moreover, the apatitic material containing strontium induces the most significant reduction in the differentiation of preosteoclasts into osteoclasts, demonstrating not only osteogenic and angiogenic properties, but also ability to regulate bone resorption.


Asunto(s)
Regeneración Ósea , Cobalto , Manganeso , Células Madre Mesenquimatosas , Osteogénesis , Estroncio , Estroncio/farmacología , Estroncio/química , Cobalto/química , Humanos , Osteogénesis/efectos de los fármacos , Manganeso/química , Manganeso/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Supervivencia Celular/efectos de los fármacos , Angiogénesis
10.
Coll Antropol ; 37(3): 985-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24308247

RESUMEN

In this paper the osteobiography of an elderly woman recovered from a cemetery tomb where she was buried in 1850, affected by hip fracture and osteoporosis, is described. The overall anthropological characteristics of the individual have been investigated. Macroscopic, radiographic, tomographic, microscopic, and chemical and structural examinations have been performed to give a detailed account of the condition of the skeleton. A non-union pertrochanteric fracture not surgically treated and probably due to senile osteoporosis was diagnosed. The consequences of the fracture to the bones show that this individual likely survived several years following the injury. The osseous features we describe (remodelled bone at the fracture site, asymmetry of entheseal changes likely related to the particular walking pattern of the individual) may be useful in personal identification of skeletons of legal interest. Regarding the recognition of osteoporosis in unearthed skeletons, our study underlines that the cortical thickness, microscopic features, degree of crystallinity and Ca/P ratio represent more useful elements than the mean bone density, mineral/matrix ratio and mineral maturity, which are more sensitive to diagenetic changes that affect the mineral phase post-mortem.


Asunto(s)
Antropología Física/métodos , Fracturas de Cadera/diagnóstico , Osteoporosis/diagnóstico , Acetábulo/diagnóstico por imagen , Acetábulo/lesiones , Anciano de 80 o más Años , Femenino , Fracturas de Cadera/historia , Historia del Siglo XIX , Humanos , Comunicación Interdisciplinaria , Osteoporosis/historia , Radiografía
11.
Pharmaceutics ; 15(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37242586

RESUMEN

Curcumin has numerous biological activities and pharmaceutical applications related to its ability to inhibit reactive oxygen species. Herein, strontium-substituted monetite (SrDCPA) and strontium-substituted brushite (SrDCPD) were synthesized and further functionalized with curcumin with the aim to develop materials that combine the anti-oxidant properties of the polyphenol, the beneficial role of strontium toward bone tissue, and the bioactivity of calcium phosphates. Adsorption from hydroalcoholic solution increases with time and curcumin concentration, up to about 5-6 wt%, without affecting the crystal structure, morphology, and mechanical response of the substrates. The multi-functionalized substrates exhibit a relevant radical scavenging activity and a sustained release in phosphate buffer. Cell viability, morphology, and expression of the most representative genes were tested for osteoclast seeded in direct contact with the materials and for osteoblast/osteoclast co-cultures. The materials at relatively low curcumin content (2-3 wt%) maintain inhibitory effects on osteoclasts and support the colonization and viability of osteoblasts. The expressions of Alkaline Phosphatase (ALPL), collagen type I alpha 1 chain (COL1A1), and osteocalcin (BGLAP) suggest that curcumin reduces the osteoblast differentiation state but yields encouraging osteoprotegerin/receptor activator for the NFkB factor ligand (OPG/RANKL) ratio.

12.
J Funct Biomater ; 13(2)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35735920

RESUMEN

Monetite and brushite are regarded with increasing interest for the preparation of biomaterials for applications in the musculoskeletal system. Herein, we investigated the influence of strontium substitution in the structures of these two phosphates on bone cell response. To achieve this aim, co-cultures of human primary osteoclasts and human osteoblast-like MG63 cells were tested on strontium-substituted monetite and strontium-substituted brushite, as well as on monetite and brushite, as controls. In both structures, strontium substitution for calcium amounted to about 6 at% and provoked enlargement of the cell parameters and morphologic variations. Cumulative release in physiological solution increased linearly over time and was greater from brushite (up to about 160 and 560 mg/L at 14 days for Sr and Ca, respectively) than from monetite (up to about 90 and 250 mg/L at 14 days for Sr and Ca, respectively). The increasing viability of osteoblast-like cells over time, with the different expression level of some typical bone markers, indicates a more pronounced trigger toward osteoblast differentiation and osteoclast inhibition by brushite materials. In particular, the inhibition of cathepsin K and tartrate-resistant acid phosphatase at the gene and morphological levels suggests strontium-substituted brushite can be applied in diseases characterized by excessive bone resorption.

13.
J Funct Biomater ; 13(3)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893456

RESUMEN

The availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO3) nanoparticles in the aim to obtain composite materials with improved biological performance. To this purpose, we used HA, as well as HA functionalized with polyacrilic acid (HAPAA) or poly(ethylenimine) (HAPEI), as supports and polyvinylpyrrolidone (PVP) as stabilizing agent for WO3 nanoparticles. The number of nanoparticles loaded on the substrates was determined through Molecular Plasma-Atomic Emission Spectroscopy and is quite small, so it cannot be detected through X-ray diffraction analysis. It increases from HAPAA, to HA, to HAPEI, in agreement with the different values of zeta potential of the different substrates. HRTEM and STEM images show the dimensions of the nanoparticles are very small, less than 1 nm. In physiological solution HA support displays a greater tungsten cumulative release than HAPEI, despite its smaller loaded amount. Indeed, WO3 nanoparticles-functionalized HA exhibits a remarkable antibacterial activity against the Gram-positive Staphylococcus aureus in absence of cytotoxicity, which could be usefully exploited in the biomedical field.

14.
Polymers (Basel) ; 13(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072936

RESUMEN

In this paper we used curcumin as a functionalizing agent of gelatin films with the aim to get antioxidant materials with modulated physico-chemical properties. To this aim, we prepared gelatin films at different contents of curcumin up to about 1.2 wt%. The as-prepared films, as well as glutaraldehyde crosslinked films, were submitted to several tests: swelling, water solubility, differential scanning calorimetry, X-ray diffraction, mechanical tests and curcumin release. The radical scavenging activity of the as-prepared films is similar to that of free curcumin, indicating remarkable antioxidant properties. All the other tested properties vary as a function of curcumin content and/or the presence of the crosslinking agent. In particular, the films exhibit sustained curcumin release in different solvents. Thanks to its biocompatibility, biodegradability and lack of antigenicity, gelatin uses span from food processing to packaging and biomaterials. It follows that the modulated properties exhibited by the functionalized materials developed in this work can be usefully employed in different application fields.

15.
Colloids Surf B Biointerfaces ; 200: 111580, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33493943

RESUMEN

Multi-functionalization of calcium phosphates to get delivery systems of therapeutic agents is gaining increasing relevance for the development of functional biomaterials aimed to solve problems related to disorders of the muscolo-skeletal system. In this regard, we functionalized Strontium substituted hydroxyapatite (SrHA) with some ß-lactam integrin agonists to develop materials with enhanced properties in promoting cell adhesion and activation of intracellular signaling as well as in counteracting abnormal bone resorption. For this purpose, we selected two monocyclic ß-lactams on the basis of their activities towards specific integrins on promoting cell adhesion and signalling. The amount of ß-lactams loaded on SrHA could be modulated on changing the polarity of the loading solution, from 3.5-24 wt% for compound 1 and from 3.2-8.4 wt% for compound 2. Studies on the release of the ß-lactams from the functionalized SrHA in aqueous medium showed an initial burst followed by a steady-release that ensures a small but constant amount of the compounds over time. The new composites were fully characterized. Co-culture of human primary mesenchymal stem cells (hMSC) and human primary osteoclast (OC) demonstrated that the presence of ß-lactams on SrHA favors hMSC adhesion and viability, as well as differentiation towards osteoblastic lineage. Moreover, the ß-lactams were found to enhance the inhibitory role of Strontium on osteoclast viability and differentiation.


Asunto(s)
Durapatita , beta-Lactamas , Regeneración Ósea , Adhesión Celular , Diferenciación Celular , Humanos , Hidroxiapatitas , Integrinas , Estroncio/farmacología
16.
Int J Pharm ; 598: 120408, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647415

RESUMEN

Gelatin-based films enriched with snail slime are proposed as novel biodegradable and naturally bioadhesive patches for cutaneous drug delivery. Films (thickness range 163-248 µm) were stretchable and they adhered firmly onto the wetted skin, especially those with high amount (70% V/V) of snail slime extract. Fluconazole was selected as model drug and added to films containing the highest amount of snail slime. The presence of Fluconazole (4.53 ± 0.07% w/w) did not modify significantly the mechanical properties, the swelling degree and the bioadhesive performances of the films. Structural investigations demonstrated that the crystalline form III of the drug changed to the amorphous one, forming an amorphous solid dispersion. Moreover, snail slime prevented the drug recrystallization over time. In vitro permeation studies showed that film exhibited a cumulative drug concentration (over 60% in 24 h) similar to that of the control solution containing 20% w/V of ethanol. Fluconazole-loaded gelatin films proved to be effective towards clinical isolates of Candida spp. indicating that the drug maintained its remarkable antifungal activity once formulated into gelatin and snail slime-based films. In conclusion, snail slime, thanks to its peculiar composition, has proved to be responsible of optimal skin adhesion, film flexibility and of the formation of a supersaturating drug delivery system able to increase skin permeation.


Asunto(s)
Gelatina , Preparaciones Farmacéuticas , Administración Cutánea , Sistemas de Liberación de Medicamentos , Fluconazol
17.
Future Med Chem ; 12(6): 479-491, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32064939

RESUMEN

Aim: The pharmaceutical industry is showing renewed interest in therapeutic peptides. Unfortunately, the chemical synthesis of peptides remains very expensive and problematic in terms of environmental sustainability. Hence, making peptides 'greener' has become a new front line for the expansion of peptide market. Results: We developed a mechanochemical solvent-free peptide bond-forming protocol using standard reagents and nanocrystalline hydroxyapatite as a bio-compatible, reusable inorganic base. The reaction was also conducted under ultra-mild, minimal solvent-grinding conditions, using common laboratory equipment. Conclusion: The efficacy of the described protocol was validated with the convenient preparation of endomorphin-1, H-Tyr-Pro-Trp-Phe-NH2, the endogenous ligand of the µ-opioid receptor, currently regarded as a lead for the discovery of painkillers devoid of harmful side effects.


Asunto(s)
Durapatita/química , Nanopartículas/química , Oligopéptidos/síntesis química , Cristalización , Ligandos , Estructura Molecular , Oligopéptidos/química
18.
Int J Biol Macromol ; 143: 126-135, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31805330

RESUMEN

Snail mucus is an attractive natural substance, which is increasingly used in cosmetic creams and syrups thanks to its emollient, moisturizing, protective and reparative properties. The aim of the present study was to explore the physicochemical properties of chitosan-based films added with snail mucus extracted from Helix Aspersa Muller. To this aim, chitosan films at different content of snail mucus were fabricated by simple solvent casting technique. The results of X-ray diffraction analyses, tensile mechanical tests, Infrared spectroscopy and thermogravimetry demonstrated that snail mucus addition strongly modifies the properties of chitosan films. In particular, it acted like a plasticizer enhancing films extensibility up to ten times and strongly improving their water barrier and bioadhesion properties, with a trend depending on Snail mucus content. Furthermore, it provides the films with antibacterial properties and enhanced cytocompatibility, yielding materials with tailored properties for specific requirements.


Asunto(s)
Antibacterianos/farmacología , Quitosano/química , Moco/química , Caracoles/química , Animales , Antibacterianos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fenómenos Químicos , Análisis Espectral , Vapor , Termogravimetría
19.
J Funct Biomater ; 10(1)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717259

RESUMEN

Dicalcium phosphate dihydrate (DCPD) is one of the mineral phases indicated as possible precursors of biological apatites and it is widely employed in the preparation of calcium phosphate bone cements. Herein, we investigated the possibility to functionalize DCPD with aspartic acid (ASP) and poly-aspartic acid (PASP), as models of the acidic macromolecules of biomineralized tissues, and studied their influence on DCPD hydrolysis. To this aim, the synthesis of DCPD was performed in aqueous solution in the presence of increasing concentrations of PASP and ASP, whereas the hydrolysis reaction was carried out in physiological solution up to three days. The results indicate that it is possible to prepare DCPD functionalized with PASP up to a polyelectrolyte content of about 2.3 wt%. The increase of PASP content induces crystal aggregation, reduction of the yield of the reaction and of the thermal stability of the synthesized DCPD. Moreover, DCPD samples functionalized with PASP display a slower hydrolysis than pure DCPD. On the other hand, in the explored range of concentrations (up to 10 mM) ASP is not incorporated into DCPD and does not influence its crystallization nor its hydrolysis. At variance, when present in the hydrolysis solution, ASP, and even more PASP, delays the conversion into the more stable phases, octacalcium phosphate and/or hydroxyapatite. The greater influence of PASP on the synthesis and hydrolysis of DCPD can be ascribed to the cooperative action of the carboxylate groups and to its good fit with DCPD structure.

20.
Mater Sci Eng C Mater Biol Appl ; 95: 355-362, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573259

RESUMEN

PURPOSE: The purpose of this study was to comparatively investigate the posterolateral fusion rate in ovariectomized (OVX) rats using two new bone graft materials: strontium (Sr) substituted hydroxyapatite (HA) nanocrystals and alendronate (AL) functionalized HA nanocrystals. SrHA was synthesized in presence of different Sr concentrations (SrHA5; SrHA10) and HA-AL nanocrystals at increasing bisphosphonate (BP) content (HA-AL7; HA-AL28). METHODS: A posterolateral spinal fusion model in twenty-five Sham operated and in twenty-five OVX female rats was used and materials were bilaterally implanted between transverse processes of lumbar vertebrae. Sham and OVX animals were divided in five groups depending on the material: HA, SrHA5, SrHA10, HA-AL7 and HA-AL28. The assessment of bone fusion was carried out by µCT, histology and histomorphometry. RESULTS: Some gaps between the transverse processes were observed by µCT in OVXHA group, while they were not present in all the other groups. These results were consistent with the histomorphometrical analyses showing that in OVX animals SrHA and HA-AL materials displayed significantly higher BV/TV and Tb.Th and significantly lower Tb.N and Tb.Sp in comparison with HA alone. CONCLUSIONS: Results of this study suggest that in spinal fusion the incorporation of bioactive ions or drugs as Sr and AL improves the biological performance of HA representing a promising strategy especially in osteoporosis patients with high risks of spinal fusion failure. Results also suggest the existence of a Sr and AL dose response effect and that HA containing the highest AL dose could be the candidate biomaterial for spinal fusion in osteoporotic subjects.


Asunto(s)
Alendronato/química , Artrodesis/métodos , Durapatita/química , Vértebras Lumbares/patología , Vértebras Lumbares/cirugía , Estroncio/química , Animales , Materiales Biocompatibles/química , Femenino , Ovariectomía , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA