Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Mol Life Sci ; 80(6): 150, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184603

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Filamentos Intermedios , Superóxido Dismutasa-1/genética , Proteína C9orf72/genética , Neuronas Motoras/patología
2.
Comput Econ ; 60(4): 1529-1546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34580566

RESUMEN

This study investigates the relationship between the financial market and the real business cycle in the US from February 1987 to March 2016. Using different monthly time-series as proxies for the financial and macroeconomic cycles, we first specify the determinants and then build two indicators to measure the financial and real business cycles based on principal component analysis. We identify not only the main different cycles for each indicator but also measure the duration of the phases for each indicator. Second, we study the relationship between economic and financial indicators per cycle and per phase using a vector autoregressive model. Our findings show that the economic indicator is useful to forecast the financial, and that there exists a significant relationship between the financial and economic cycles that is actively stronger during the "expansion-growth" phase. This result enables investors and policymakers to better forecast the future dynamics of financial sector using the information provided by the analysis of the real business cycle.

3.
Acta Neuropathol ; 138(1): 123-145, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30874923

RESUMEN

Recently, we provided genetic basis showing that mitochondrial dysfunction can trigger motor neuron degeneration, through identification of CHCHD10 encoding a mitochondrial protein. We reported patients, carrying the p.Ser59Leu heterozygous mutation in CHCHD10, from a large family with a mitochondrial myopathy associated with motor neuron disease (MND). Rapidly, our group and others reported CHCHD10 mutations in amyotrophic lateral sclerosis (ALS), frontotemporal dementia-ALS and other neurodegenerative diseases. Here, we generated knock-in (KI) mice, carrying the p.Ser59Leu mutation, that mimic the mitochondrial myopathy with mtDNA instability displayed by the patients from our original family. Before 14 months of age, all KI mice developed a fatal mitochondrial cardiomyopathy associated with enhanced mitophagy. CHCHD10S59L/+ mice also displayed neuromuscular junction (NMJ) and motor neuron degeneration with hyper-fragmentation of the motor end plate and moderate but significant motor neuron loss in lumbar spinal cord at the end stage of the disease. At this stage, we observed TDP-43 cytoplasmic aggregates in spinal neurons. We also showed that motor neurons differentiated from human iPSC carrying the p.Ser59Leu mutation were much more sensitive to Staurosporine or glutamate-induced caspase activation than control cells. These data confirm that mitochondrial deficiency associated with CHCHD10 mutations can be at the origin of MND. CHCHD10 is highly expressed in the NMJ post-synaptic part. Importantly, the fragmentation of the motor end plate was associated with abnormal CHCHD10 expression that was also observed closed to NMJs which were morphologically normal. Furthermore, we found OXPHOS deficiency in muscle of CHCHD10S59L/+ mice at 3 months of age in the absence of neuron loss in spinal cord. Our data show that the pathological effects of the p.Ser59Leu mutation target muscle prior to NMJ and motor neurons. They likely lead to OXPHOS deficiency, loss of cristae junctions and destabilization of internal membrane structure within mitochondria at motor end plate of NMJ, impairing neurotransmission. These data are in favor with a key role for muscle in MND associated with CHCHD10 mutations.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Muerte Celular/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Ratones Transgénicos , Proteínas Mitocondriales/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Fenotipo
4.
Hum Mol Genet ; 25(14): 2972-2984, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27206984

RESUMEN

Mutations in PARK2, encoding the E3 ubiquitin protein ligase Parkin, are a common cause of autosomal recessive Parkinson's disease (PD). Loss of PARK2 function compromises mitochondrial quality by affecting mitochondrial biogenesis, bioenergetics, dynamics, transport and turnover. We investigated the impact of PARK2 dysfunction on the endoplasmic reticulum (ER)-mitochondria interface, which mediates calcium (Ca2+) exchange between the two compartments and is essential for Parkin-dependent mitophagy. Confocal and electron microscopy analyses showed the ER and mitochondria to be in closer proximity in primary fibroblasts from PARK2 knockout (KO) mice and PD patients with PARK2 mutations than in controls. Ca2+ flux to the cytosol was also modified, due to enhanced ER-to-mitochondria Ca2+ transfers, a change that was also observed in neurons derived from induced pluripotent stem cells of a patient with PARK2 mutations. Subcellular fractionation showed the abundance of the Parkin substrate mitofusin 2 (Mfn2), which is known to modulate the ER-mitochondria interface, to be specifically higher in the mitochondrion-associated ER membrane compartment in PARK2 KO tissue. Mfn2 downregulation or the exogenous expression of normal Parkin restored cytosolic Ca2+ transients in fibroblasts from patients with PARK2 mutations. In contrast, a catalytically inactive PD-related Parkin variant had no effect. Overall, our data suggest that Parkin is directly involved in regulating ER-mitochondria contacts and provide new insight into the role of the loss of Parkin function in PD development.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Señalización del Calcio/genética , Citosol/metabolismo , Retículo Endoplásmico/patología , Fibroblastos , GTP Fosfohidrolasas/biosíntesis , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/patología , Mitofagia/genética , Mutación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
5.
Mol Genet Metab ; 114(2): 138-45, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25541102

RESUMEN

Mucopolysaccharidosis type I (MPS I) is due to deficient alpha-L-iduronidase (IDUA) which leads to storage of undegraded glycosaminoglycans (GAG). The severe form of the disease is characterized by mental retardation of unknown etiology. Trying to unveil the mechanisms that lead to cognitive impairment in MPS I, we studied alterations in the proteome from MPS I mouse hippocampus. Eight-month old mice presented increased LAMP-1 expression, GAG storage in neurons and glial cells, and impaired aversive and non-aversive memory. Shotgun proteomics was performed and 297 proteins were identified. Of those, 32 were differentially expressed. We found elevation in proteins such as cathepsins B and D; however their increase did not lead to cell death in MPS I brains. Glial fibrillary acid protein (GFAP) was markedly elevated, and immunohistochemistry confirmed a neuroinflammatory process that could be responsible for neuronal dysfunction. We didn't observe any differences in ubiquitin expression, as well as in other proteins related to protein folding, suggesting that the ubiquitin system is working properly. Finally, we observed alterations in several proteins involved in synaptic plasticity, including overexpression of post synaptic density-95 (PSD95) and reduction of microtubule-associated proteins 1A and 1B. These results together suggest that the cognitive impairment in MPS I mice is not due to massive cell death, but rather to neuronal dysfunction caused by multiple processes, including neuroinflammation and alterations in synaptic plasticity.


Asunto(s)
Trastornos del Conocimiento/etiología , Cognición , Hipocampo/metabolismo , Mucopolisacaridosis I/complicaciones , Mucopolisacaridosis I/metabolismo , Proteoma/análisis , Proteómica , Animales , Encéfalo/fisiopatología , Catepsina B/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacología , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Glicosaminoglicanos/metabolismo , Hipocampo/fisiopatología , Iduronidasa/deficiencia , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Mucopolisacaridosis I/fisiopatología , Neuroglía/metabolismo , Neuronas/metabolismo
6.
Hum Mol Genet ; 21(7): 1481-95, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22156940

RESUMEN

Cell pathology in lysosomal storage diseases is characterized by the formation of distended vacuoles with characteristics of lysosomes. Our previous studies in mucopolysaccharidosis type IIIB (MPSIIIB), a disease in which a genetic defect induces the accumulation of undigested heparan sulfate (HS) fragments, led to the hypothesis that abnormal lysosome formation was related to events occurring at the Golgi level. We reproduced the enzyme defect of MPSIIIB in HeLa cells using tetracycline-inducible expression of shRNAs directed against α-N-acetylglucosaminidase (NAGLU) and addressed this hypothesis. HeLa cells deprived of NAGLU accumulated abnormal lysosomes. The Golgi matrix protein GM130 was over-expressed. The cis- and medial-Golgi compartments were distended, elongated and formed circularized ribbons. The Golgi microtubule network was enlarged with increased amounts of AKAP450, a partner of GM130 controlling this network. GM130 down-regulation prevented pathology in HeLa cells deprived of NAGLU, whereas GM130 over-expression in control HeLa cells mimicked the pathology of deprived cells. We concluded that abnormal lysosomes forming in cells accumulating HS fragments were the consequence of GM130 gain-of-function and subsequent alterations of the Golgi ribbon architecture. These results indicate that GM130 functions are modulated by HS glycosaminoglycans and therefore possibly controlled by extracellular cues.


Asunto(s)
Autoantígenos/metabolismo , Proteínas de la Membrana/metabolismo , Mucopolisacaridosis III/patología , Acetilglucosaminidasa/antagonistas & inhibidores , Aparato de Golgi/ultraestructura , Células HeLa , Humanos , Lisosomas/patología , Microtúbulos/ultraestructura , Modelos Biológicos , Vacuolas/ultraestructura
7.
Nat Commun ; 15(1): 2796, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555298

RESUMEN

The Y-linked SRY gene initiates mammalian testis-determination. However, how the expression of SRY is regulated remains elusive. Here, we demonstrate that a conserved steroidogenic factor-1 (SF-1)/NR5A1 binding enhancer is required for appropriate SRY expression to initiate testis-determination in humans. Comparative sequence analysis of SRY 5' regions in mammals identified an evolutionary conserved SF-1/NR5A1-binding motif within a 250 bp region of open chromatin located 5 kilobases upstream of the SRY transcription start site. Genomic analysis of 46,XY individuals with disrupted testis-determination, including a large multigenerational family, identified unique single-base substitutions of highly conserved residues within the SF-1/NR5A1-binding element. In silico modelling and in vitro assays demonstrate the enhancer properties of the NR5A1 motif. Deletion of this hemizygous element by genome-editing, in a novel in vitro cellular model recapitulating human Sertoli cell formation, resulted in a significant reduction in expression of SRY. Therefore, human NR5A1 acts as a regulatory switch between testis and ovary development by upregulating SRY expression, a role that may predate the eutherian radiation. We show that disruption of an enhancer can phenocopy variants in the coding regions of SRY that cause human testis dysgenesis. Since disease causing variants in enhancers are currently rare, the regulation of gene expression in testis-determination offers a paradigm to define enhancer activity in a key developmental process.


Asunto(s)
Disgenesia Gonadal , Testículo , Animales , Femenino , Humanos , Masculino , Línea Celular , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Células de Sertoli/metabolismo , Proteína de la Región Y Determinante del Sexo/genética , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Testículo/metabolismo
8.
Hum Mol Genet ; 20(18): 3653-66, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21685203

RESUMEN

By providing access to affected neurons, human induced pluripotent stem cells (iPSc) offer a unique opportunity to model human neurodegenerative diseases. We generated human iPSc from the skin fibroblasts of children with mucopolysaccharidosis type IIIB. In this fatal lysosomal storage disease, defective α-N-acetylglucosaminidase interrupts the degradation of heparan sulfate (HS) proteoglycans and induces cell disorders predominating in the central nervous system, causing relentless progression toward severe mental retardation. Partially digested proteoglycans, which affect fibroblast growth factor signaling, accumulated in patient cells. They impaired isolation of emerging iPSc unless exogenous supply of the missing enzyme cleared storage and restored cell proliferation. After several passages, patient iPSc starved of an exogenous enzyme continued to proliferate in the presence of fibroblast growth factor despite HS accumulation. Survival and neural differentiation of patient iPSc were comparable with unaffected controls. Whereas cell pathology was modest in floating neurosphere cultures, undifferentiated patient iPSc and their neuronal progeny expressed cell disorders consisting of storage vesicles and severe disorganization of Golgi ribbons associated with modified expression of the Golgi matrix protein GM130. Gene expression profiling in neural stem cells pointed to alterations of extracellular matrix constituents and cell-matrix interactions, whereas genes associated with lysosome or Golgi apparatus functions were downregulated. Taken together, these results suggest defective responses of patient undifferentiated stem cells and neurons to environmental cues, which possibly affect Golgi organization, cell migration and neuritogenesis. This could have potential consequences on post-natal neurological development, once HS proteoglycan accumulation becomes prominent in the affected child brain.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Lisosomas/metabolismo , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/fisiopatología , Neuronas/citología , Acetilglucosaminidasa/genética , Acetilglucosaminidasa/metabolismo , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/metabolismo , Lisosomas/enzimología , Masculino , Modelos Biológicos , Mucopolisacaridosis III/enzimología , Mucopolisacaridosis III/genética , Mutación , Neuronas/enzimología , Neuronas/metabolismo
9.
Mol Ther ; 19(2): 251-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21139569

RESUMEN

Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.


Asunto(s)
Encéfalo/metabolismo , Terapia Genética/métodos , Mucopolisacaridosis III/terapia , Mucopolisacaridosis I/terapia , Acetilglucosaminidasa/genética , Animales , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Terapia Genética/efectos adversos , Vectores Genéticos/genética , Reacción en Cadena de la Polimerasa
10.
Am J Pathol ; 177(6): 2984-99, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21037080

RESUMEN

The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.


Asunto(s)
Vesículas Citoplasmáticas/patología , Aparato de Golgi/patología , Neuronas/ultraestructura , Animales , Autofagia/fisiología , Transporte Biológico/fisiología , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Modelos Animales de Enfermedad , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucopolisacaridosis III/complicaciones , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/patología , Neuronas/metabolismo , Neuronas/patología , Neuronas/fisiología
11.
J Neurosci Res ; 88(1): 202-13, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19658197

RESUMEN

Behavioral manifestations mark the onset of disease expression in children with mucopolysaccharidosis type III (MPSIII, Sanfilippo syndrome), a genetic disorder resulting from interruption of the lysosomal degradation of heparan sulfate. In the mouse model of MPSIII type B (MPSIIIB), cortical neuron pathology and dysfunction occur several months before neuronal loss and are primarily cell autonomous. The gene coding for GAP43, a neurite growth potentiator, is overexpressed in the MPSIIIB mouse cortex, and neurite dystrophy was reported in other types of lysosomal storage diseases. We therefore examined the development of the neuritic trees in pure populations of MPSIIIB mouse embryo cortical neurons grown for up to 12 days in primary culture. Dynamic observation of living neurons and quantification of neurite growth parameters indicated more frequent neurite elongation and branching and less frequent neurite retraction, resulting in a relative overgrowth of MPSIIIB neuron neuritic trees, involving both dendrites and axons, compared with normal controls. Neurite overgrowth was concomitant with more than twofold increased expression of GAP43 mRNAs and proteins. Correction of the genetic defect leads to expression of the missing lysosomal enzyme, normal GAP43 mRNA expression, and reduced neurite outgrowth. These results indicate that heparan sulfate oligosaccharide storage modifies GAP43 expression in MPSIIIB cortical neurons with potential consequences for neurite development and neuronal functions that may be relevant to clinical manifestations.


Asunto(s)
Corteza Cerebral/metabolismo , Proteína GAP-43/metabolismo , Mucopolisacaridosis III/metabolismo , Neuritas/metabolismo , Animales , Western Blotting , Forma de la Célula/fisiología , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Proteína GAP-43/genética , Expresión Génica , Vectores Genéticos/metabolismo , Lentivirus/metabolismo , Ratones , Mucopolisacaridosis III/genética , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas , Factores de Tiempo
12.
Biochem Soc Trans ; 38(6): 1442-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21118104

RESUMEN

Biochemical disorders in lysosomal storage diseases consist of the interruption of metabolic pathways involved in the recycling of the degradation products of one or several types of macromolecules. The progressive accumulation of these primary storage products is the direct consequence of the genetic defect and represents the initial pathogenic event. Downstream consequences for the affected cells include the accumulation of secondary storage products and the formation of histological storage lesions, which appear as intracellular vacuoles that represent the pathological hallmark of lysosomal storage diseases. Relationships between storage products and storage lesions are not simple and are still largely not understood. Primary storage products induce malfunction of the organelles where they accumulate, these being primarily, but not only, lysosomes. Consequences for cell metabolism and intracellular trafficking combine the effects of primary storage product toxicity and the compensatory mechanisms activated to protect the cell. Induced disorders extend far beyond the primarily interrupted metabolic pathway.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Redes y Vías Metabólicas , Animales , Autoantígenos/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Encéfalo/patología , Aparato de Golgi/patología , Humanos , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/patología , Proteínas de la Membrana/metabolismo
13.
Mol Cell Neurosci ; 41(1): 8-18, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19386237

RESUMEN

The interruption of the lysosomal degradation of heparan sulfate oligosaccharides has deleterious consequences on the central nervous system in children or in animals with mucopolysaccharidosis type III (Sanfilippo syndrome). Behavioural manifestations are prominent at disease onset, suggesting possible early synaptic defects in cortical neurons. We report that synaptophysin, the most abundant protein of the synaptic vesicle membrane, was detected at low levels in the rostral cortex of MPSIII type B mice as early as 10 days after birth. This defect preceded other disease manifestations, was associated with normal neuron and synapse density and corrected after gene transfer inducing re-expression of the missing lysosomal enzyme. Clearance of heparan sulfate oligosaccharides in cultured embryonic MPSIIIB cortical neurons or treatment with proteasome inhibitors restored normal synaptophysin levels indicating that heparan sulfate oligosaccharides activate the degradation of synaptophysin by the proteasome with consequences on synaptic vesicle components that are relevant to clinical manifestations.


Asunto(s)
Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/fisiopatología , Complejo de la Endopetidasa Proteasomal/metabolismo , Sinaptofisina/metabolismo , Acetilglucosaminidasa/genética , Acetilglucosaminidasa/metabolismo , Animales , Conducta/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Niño , Femenino , Proteína GAP-43/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis III/patología , Neuronas/citología , Neuronas/metabolismo , Proteínas R-SNARE/metabolismo , Sinaptofisina/genética
14.
J Neurosurg ; 119(3): 739-50, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23581595

RESUMEN

OBJECT: Facial nerve injury results in facial palsy that has great impact on the psychosocial conditions of affected patients. Reconstruction of the facial nerve to restore facial symmetry and expression is still a significant surgical challenge. In this study, the authors assessed a hypoglossal-facial nerve anastomosis method combined with neurotrophic factor gene therapy to treat facial palsy in adult rats after facial nerve injury. METHODS: Surgery consisted of the interposition of a predegenerated nerve graft (PNG) that was anastomosed with the hypoglossal and facial nerves at each of its extremities. The hypoglossal nerve was cut approximately 50% for this anastomosis to conserve partial hypoglossal function. Before their transplantation, the PNGs were genetically engineered using lentiviral vectors to induce overexpression of the neurotrophic factor neurotrophin-3 (NT-3) to improve axonal regrowth in the reconstructed nerve pathway. Reconstruction was performed after facial nerve injury, either immediately or after a delay of 9 weeks. The rats were followed up for 4 months postoperatively, and treatment outcomes were then assessed. RESULTS: Compared with the functional innervation in control rats that underwent facial nerve injury without subsequent treatment, functional innervation of the paralyzed whisker pad by hypoglossal motoneurons in rats treated 4 months after nerve reconstruction was evidenced by the retrograde transport of neuronal tracers, the recording of muscle action potentials conducted by the PNG, and the recovery of facial symmetry. Although a better outcome was observed when reconstruction was performed immediately after facial nerve injury, reconstruction with NT3-treated PNGs significantly improved functional reinnervation of the paralyzed whisker pad even when implantation occurred 9 weeks posttrauma. CONCLUSIONS: Results demonstrated that hypoglossal-facial nerve anastomosis facilitates innervation of paralyzed facial muscle via hypoglossal motoneurons without sacrificing ipsilateral hemitongue function. Neurotrophin-3 treatment through gene therapy could effectively improve such innervation, even after delayed reconstruction. These findings suggest that the combination of surgical reconstruction and NT-3 gene therapy is promising for its potential application in treating facial palsy in humans.


Asunto(s)
Nervio Facial/cirugía , Parálisis Facial/terapia , Terapia Genética/métodos , Nervio Hipogloso/cirugía , Procedimientos Neuroquirúrgicos/métodos , Neurotrofina 3/uso terapéutico , Anastomosis Quirúrgica/métodos , Animales , Modelos Animales de Enfermedad , Nervio Facial/fisiología , Parálisis Facial/cirugía , Estudios de Seguimiento , Nervio Hipogloso/fisiología , Masculino , Regeneración Nerviosa/genética , Ratas , Ratas Endogámicas F344
15.
Neurosurgery ; 68(2): 450-61; discussion 461, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21135740

RESUMEN

BACKGROUND: Spinal root avulsion, or section, results in devastating functional sequels. Whereas reconstruction of motor pathways based on neurotization can reduce motor deficit, associated permanent limb anesthesia limits expected benefit. Sensory pathway reconstruction after dorsal root injury is limited by the inability of re-growing central sensory axons to enter the spinal cord through an injured root. OBJECTIVE: To provide evidence for the reconnection of C7 DRG neurons with the central nervous system (CNS) after experimental section of the C7 dorsal root in adult rats. METHODS: We assessed a new reconstruction strategy in adult rats 9 weeks after transection of C6 and C7 dorsal roots. Re-growing C7 central sensory axons were redirected to the noninjured C5 dorsal root through a nerve graft by end-to-side anastomosis that did not alter the C5 conduction properties. In a subgroup of rats, surgical reconstruction was combined with lentivirus-mediated gene transfer to the nerve graft in order to overexpress neurotrophin 3 (NT-3), a neurotrophic factor that stimulates sensory axon regeneration. RESULTS: Four months after reconstruction, recording of sensory evoked potentials and fluorescent tracer transport showed electrical and physical reconnection of the C7 dorsal root ganglion neurons to the spinal cord through the reconstructed pathway. Sensory perception recovery predominated on proprioception. Axonal regrowth and perception were improved when the nerve graft overexpressed neurotrophin-3 at the time of transplantation. Neurotrophin-3 overexpression did not persist 4 months after transplantation. CONCLUSION: Efficient and functional reconnection of dorsal root ganglion neurons to the spinal cord can be achieved in rats several weeks after cervical dorsal root injury. Surgical repair of sensory pathways could be considered in combination with motor nerve neurotization to treat persisting severe upper limb disability in humans.


Asunto(s)
Regeneración Nerviosa/fisiología , Neurotrofina 3/metabolismo , Traumatismos de la Médula Espinal/cirugía , Raíces Nerviosas Espinales/cirugía , Anastomosis Quirúrgica , Animales , Axotomía , Vértebras Cervicales , Potenciales Evocados Somatosensoriales , Masculino , Nervio Peroneo/trasplante , Ratas , Ratas Endogámicas F344 , Raíces Nerviosas Espinales/lesiones , Trasplantes
16.
PLoS One ; 3(5): e2296, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18509511

RESUMEN

BACKGROUND: In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory disorders in a mouse model of this disease. METHODOLOGY/PRINCIPAL FINDINGS: In cell culture, heparan sulfate oligosaccharides activated microglial cells by signaling through the Toll-like receptor 4 and the adaptor protein MyD88. CD11b positive microglial cells and three-fold increased expression of mRNAs coding for the chemokine MIP1alpha were observed at 10 days in the brain cortex of MPSIIIB mice, but not in MPSIIIB mice deleted for the expression of Toll-like receptor 4 or the adaptor protein MyD88, indicating early priming of microglial cells by heparan sulfate oligosaccharides in the MPSIIIB mouse brain. Whereas the onset of brain inflammation was delayed for several months in doubly mutant versus MPSIIIB mice, the onset of disease markers expression was unchanged, indicating similar progression of the neurodegenerative process in the absence of microglial cell priming by heparan sulfate oligosaccharides. In contrast to younger mice, inflammation in aged MPSIIIB mice was not affected by TLR4/MyD88 deficiency. CONCLUSIONS/SIGNIFICANCE: These results indicate priming of microglia by HS oligosaccharides through the TLR4/MyD88 pathway. Although intrinsic to the disease, this phenomenon is not a major determinant of the neurodegenerative process. Inflammation may still contribute to neurodegeneration in late stages of the disease, albeit independent of TLR4/MyD88. The results support the view that neurodegeneration is primarily cell autonomous in this pediatric disease.


Asunto(s)
Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Microglía/metabolismo , Mucopolisacaridosis III/patología , Animales , Secuencia de Bases , Encéfalo/patología , Niño , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Técnicas de Transferencia de Gen , Humanos , Ratones , Ratones Mutantes , Mucopolisacaridosis III/metabolismo
17.
Dev Biol ; 277(2): 472-92, 2005 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15617688

RESUMEN

The p21-activated kinase (PAK) proteins regulate many cellular events including cell cycle progression, cell death and survival, and cytoskeleton rearrangements. We previously identified X-PAK5 that binds the actin and microtubule networks, and could potentially regulate their coordinated dynamics during cell motility. In this study, we investigated the functional importance of this kinase during gastrulation in Xenopus. X-PAK5 is mainly expressed in regions of the embryo that undergo extensive cell movements during gastrula such as the animal hemisphere and the marginal zone. Expression of a kinase-dead mutant inhibits convergent extension movements in whole embryos and in activin-treated animal cap by modifying behavior of cells. This phenotype is rescued in embryo by adding back X-PAK5 catalytic activity. The active kinase decreases cell adhesiveness when expressed in animal hemisphere and inhibits the calcium-dependent reassociation of cells, while dead X-PAK5 kinase localizes to cell-cell junctions and increases cell adhesion. In addition, endogenous X-PAK5 colocalizes with adherens junction proteins and its activity is regulated by extracellular calcium. Taken together, our results suggest that X-PAK5 regulates convergent extension movements in vivo by modulating the calcium-mediated cell-cell adhesion.


Asunto(s)
Blastómeros/metabolismo , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Epigénesis Genética , Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Uniones Adherentes/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Caspasa 3 , Caspasas/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Xenopus/metabolismo , beta-Galactosidasa , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA