Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int Microbiol ; 27(2): 545-558, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37516695

RESUMEN

The aim of this study was to evaluate the impact of metal-tolerant plant growth-promoting bacteria (PGPB) isolated from the chloragogenous tissue of Aporrectodea molleri, which represents a unique habitat. Our objectives were to investigate their effects on the growth of Spinacia oleracea under heavy metal stress and assess their potential for enhancing phytoremediation capabilities. The experiment was conducted in an alkaline soil contaminated with 7 mg kg-1 of cadmium, 100 mg kg-1 of nickel, 150 mg kg-1 of copper, 300 mg kg-1 of Zinc, and mg kg-1 of 600 Manganese. The results showed that heavy metal stress considerably diminished root (42.8%) and shoot length (60.1%), biomass (80%), chlorophyll content (41%), soil alkaline (45%), and acid (51%) phosphatases (42%) and urease (42%). However, soil inoculation with bacterial isolates remarkably improved plant growth. Soil bioaugmentation increased spinach growth (up to 74.5% for root length, up to 106.3% for shoot length, and up to 5.5 folds for fresh biomass) while significantly increasing soil enzyme activity and NPK content. Multivariate data analysis indicated that soil inoculation with Bacillus circulans TC7 promoted plant growth while limiting metal bioaccumulation, whereas Pseudomonas sp. TC33 and Bacillus subtilis TC34 increased metal bioaccumulation in spinach tissues while minimizing their toxicity. Our study confirms that earthworms are a reservoir of multi-beneficial bacteria that can effectively improve phytoremediation efficiency and mitigate the toxic effects of heavy metals on plant growth. Further studies are needed to investigate the long-term effects and feasibility of using these isolates as a consortium in field applications.


Asunto(s)
Metales Pesados , Oligoquetos , Contaminantes del Suelo , Animales , Spinacia oleracea , Biodegradación Ambiental , Metales Pesados/toxicidad , Metales Pesados/análisis , Bacterias , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
2.
Arch Microbiol ; 203(8): 4805-4812, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34196750

RESUMEN

Earthworms are considered as a rich microhabitat for the growth and proliferation of diverse soil microorganisms. Hence, earthworms' associated bacteria attracted interest due to their high metabolic profiles and benefits to soil fertility and plant growth. In this study, we aimed to isolate for the first-time aerobic bacteria present in the chloragogenous tissue of the earthworm Apporectodea molleri and test their Plant Growth-Promoting abilities and their resistance to heavy metals (Mn, Zn, Cu, Cd, and Ni). The 16S rRNA gene sequencing revealed the affiliation of the fifteen isolates to six main bacterial genera: Enterobacter, Citrobacter, Aeromonas, Pseudomonas, Bacillus, Terribacillus. These strains displayed different plant growth promoting traits (e.g., indole-3-acetic acid IAA, siderophores, nitrogen fixation, phosphate, and potassium solubilization), in addition, they were able to resist differently to heavy metals. Bacillus strains were most effective as three strains, namely B. subtilis strain TC34; B. circulans strain TC7 and Bacillus sp. strain TC10, were positive to all PGP traits and resisted to all heavy metals. This study illustrates the potential of bacteria from the chloragogenous tissue to exhibit multiple properties, which can be related to the functional feature of this tissue to stock metabolites and neutralize toxic elements.


Asunto(s)
Metales Pesados , Oligoquetos , Contaminantes del Suelo , Animales , Bacterias Aerobias , Metales Pesados/toxicidad , ARN Ribosómico 16S/genética , Microbiología del Suelo , Contaminantes del Suelo/análisis
3.
Plant Signal Behav ; 19(1): 2363126, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38832593

RESUMEN

Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.


Asunto(s)
Estrés Fisiológico , Bacterias/metabolismo , Animales , Zea mays/microbiología , Zea mays/metabolismo , Oligoquetos/metabolismo , Oligoquetos/microbiología
4.
Environ Sci Pollut Res Int ; 30(5): 11719-11739, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36098926

RESUMEN

This study evaluated the impact of Aporrectodea molleri's coelomic fluid-associated bacteria (CFB) on Zea mays L. growth and soil biochemical characteristics under abiotic stress conditions, including alkaline soil (pH = 8) and nitrogen (N), phosphate (P), and potassium (K) deficit. Compared to maize cultivated in uninoculated soil, the effect of CFB on boosting plant growth under abiotic stress was notably exceptional. Different CFB treatments increased significantly root and shoot length by 50% and 21%, respectively. Furthermore, the presence of isolates in soil resulted in a significant increase in plant fresh and dry weights (of up to 113% and 91% for roots, and up to 173% and 44% for shoots), leaf surface (78%), and steam diameter (107%). Overall, soil inoculation with CFB significantly (P < 0.05) enhanced chlorophyll and water content in the plant compared to the untreated soil. Despite the soil's alkaline condition, CFB drastically boosted soil quality by increasing nutrient availability (up to 30 ppm for N, 2 ppm for P, and 60 ppm for K) and enzyme activity (up to 1.14 µg p-NP h-1 g-1 for acide phosphatase, 9 µg p-NP h-1 g-1 for alkaline phosphatase and 40 µg NH4-N 2 h-1 g-1 for urease), throughout the early stages of the growth period. Interestingly, alkaline phosphatase concentrations were substantially greater in treatments with different isolates than acid phosphatase. Furthermore, the principal component analysis showed that the inoculation with bacteria strains CFB1 Buttiauxella gaviniae and CFB3 Aeromonas hydrophila had a significantly better stimulatory stimulatory and direct influence on maize growth than the other isolates had a substantial effect on soil's biochemical features. Thus, we assumed that the beneficial contribution of earthworms in the rhizosphere might be attributed in large part to associated microorganisms.


Asunto(s)
Oligoquetos , Suelo , Animales , Suelo/química , Zea mays , Fosfatasa Alcalina , Raíces de Plantas , Bacterias
5.
Environ Monit Assess ; 184(1): 515-26, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21404012

RESUMEN

Despite the number of studies describing metal hyper-accumulating plants and their associated bacteria in various regions and countries, there is no information on rhizosphere microbial potential of the Turkish serpentine soils. This study aimed to explore the rhizosphere microbial diversity of Ni-resistant, hyper-accumulating plants grown on Ni-rich soils and their metal tolerance-resistance characteristics. One hundred ninety-one locations were visited to collect soil and plant samples from different serpentine regions of Western Turkey. Following bioavailable and total Ni analysis of collected samples, the seeds of the selected plants with higher Ni content were taken to the growth/germination test in a range of serpentine soils in a growth chamber condition. In order to investigate the rhizosphere microbial diversity, Isatis pinnatiloba and Alyssum dasycarpum which were able to germinate and grow well in the preliminary tests, were introduced to 6-month greenhouse experiment in the range of three serpentine soils with higher bioavailable Ni content. I. pinnatiloba had a better stimulatory effect on the rhizosphere microbial diversity. A total of 22 bacterial isolates were identified from different soil conditions in the end of experiment. Following microbial identification and confirmation tests, 11 isolates were found to be resistant and tolerant to the increasing concentrations of Ni, Pb, Cd and Zn in the range of 50-2,000 mg L( - 1), which was considerably higher than those indicated by earlier studies. The strains isolated and identified from the Turkish serpentine soils were the members of genera Arthrobacter, Bacillus, Microbacterium and Staphylococcus.


Asunto(s)
Bacterias/efectos de los fármacos , Metales/química , Metales/farmacología , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Monitoreo del Ambiente , Níquel , Plantas/efectos de los fármacos , Plantas/metabolismo , Turquía
6.
Biology (Basel) ; 11(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36290357

RESUMEN

Global attention to climate change issues, especially air temperature changes, has drastically increased over the last half-century. Along with population growth, greater surface temperature, and higher greenhouse gas (GHG) emissions, there are growing concerns for ecosystem sustainability and other human existence on earth. The contribution of agriculture to GHG emissions indicates a level of 18% of total GHGs, mainly from carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Thus, minimizing the effects of climate change by reducing GHG emissions is crucial and can be accomplished by truly understanding the carbon footprint (CF) phenomenon. Therefore, the purposes of this study were to improve understanding of CF alteration due to agricultural management and fertility practices. CF is a popular concept in agro-environmental sciences due to its role in the environmental impact assessments related to alternative solutions and global climate change. Soil moisture content, soil temperature, porosity, and water-filled pore space are some of the soil properties directly related to GHG emissions. These properties raise the role of soil structure and soil health in the CF approach. These properties and GHG emissions are also affected by different land-use changes, soil types, and agricultural management practices. Soil management practices globally have the potential to alter atmospheric GHG emissions. Therefore, the relations between photosynthesis and GHG emissions as impacted by agricultural management practices, especially focusing on soil and related systems, must be considered. We conclude that environmental factors, land use, and agricultural practices should be considered in the management of CF when maximizing crop productivity.

7.
Sci Rep ; 9(1): 15178, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645608

RESUMEN

Essential oils (EO) of several plant species have the potential to combat plant and fungal diseases. However, the effects of Achillea millefolium EO on the development of common bean (Phaseolus vulgaris L.), is still unknown. Moreover, its effect on N2-fixing bacteria, and in general on soil properties has not been studied yet. A greenhouse trial was set up to evaluate both the influence that Achillea millefolium EO and the inoculation with three different Rhizobium strains have on the bean plant and on the chemical and microbiological properties of an agriculturally used Cambisol. Non-inoculated pots were used as control. Our findings showed a decrease in bacterial colony forming units due to EO application and an increase following the Rhizobium inoculation compared to the control. The EO application decreased soil basal respiration and activities of dehydrogenase, urease, ß-glucosidase and acid phosphatase. Such effects were stronger with higher oil concentrations. Moreover, the treatments combining Rhizobium inoculation with EO showed a positive effect on nodulation and plant height. Overall, the combined application of Achillea millefolium EO and rhizobia works as an efficient biocide that could be applied in organic agriculture without hampering the activity of nodule-forming N-fixing bacteria and the development of common bean.


Asunto(s)
Achillea/química , Aceites Volátiles/farmacología , Phaseolus/crecimiento & desarrollo , Extractos Vegetales/farmacología , Rhizobium/fisiología , Microbiología del Suelo , Suelo/química , Análisis de Varianza , Phaseolus/efectos de los fármacos , Phaseolus/enzimología
8.
Int. microbiol ; 27(2): 545-558, Abr. 2024. graf
Artículo en Inglés | IBECS (España) | ID: ibc-232300

RESUMEN

The aim of this study was to evaluate the impact of metal-tolerant plant growth-promoting bacteria (PGPB) isolated from the chloragogenous tissue of Aporrectodea molleri, which represents a unique habitat. Our objectives were to investigate their effects on the growth of Spinacia oleracea under heavy metal stress and assess their potential for enhancing phytoremediation capabilities. The experiment was conducted in an alkaline soil contaminated with 7 mg kg-1 of cadmium, 100 mg kg-1 of nickel, 150 mg kg-1 of copper, 300 mg kg-1 of Zinc, and mg kg-1 of 600 Manganese. The results showed that heavy metal stress considerably diminished root (42.8%) and shoot length (60.1%), biomass (80%), chlorophyll content (41%), soil alkaline (45%), and acid (51%) phosphatases (42%) and urease (42%). However, soil inoculation with bacterial isolates remarkably improved plant growth. Soil bioaugmentation increased spinach growth (up to 74.5% for root length, up to 106.3% for shoot length, and up to 5.5 folds for fresh biomass) while significantly increasing soil enzyme activity and NPK content. Multivariate data analysis indicated that soil inoculation with Bacillus circulans TC7 promoted plant growth while limiting metal bioaccumulation, whereas Pseudomonas sp. TC33 and Bacillus subtilis TC34 increased metal bioaccumulation in spinach tissues while minimizing their toxicity. Our study confirms that earthworms are a reservoir of multi-beneficial bacteria that can effectively improve phytoremediation efficiency and mitigate the toxic effects of heavy metals on plant growth. Further studies are needed to investigate the long-term effects and feasibility of using these isolates as a consortium in field applications.(AU)


Asunto(s)
Humanos , Oligoquetos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Bacterias , Metales Pesados/análisis , Microbiología , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA