Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 33(2): 248-269, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33793824

RESUMEN

Although regulatory small RNAs have been reported in photosynthetic cyanobacteria, the lack of clear RNA chaperones involved in their regulation poses a conundrum. Here, we analyzed the full complement of cellular RNAs and proteins using gradient profiling by sequencing (Grad-seq) in Synechocystis 6803. Complexes with overlapping subunits such as the CpcG1-type versus the CpcL-type phycobilisomes or the PsaK1 versus PsaK2 photosystem I pre(complexes) could be distinguished, supporting the high quality of this approach. Clustering of the in-gradient distribution profiles followed by several additional criteria yielded a short list of potential RNA chaperones that include an YlxR homolog and a cyanobacterial homolog of the KhpA/B complex. The data suggest previously undetected complexes between accessory proteins and CRISPR-Cas systems, such as a Csx1-Csm6 ribonucleolytic defense complex. Moreover, the exclusive association of either RpoZ or 6S RNA with the core RNA polymerase complex and the existence of a reservoir of inactive sigma-antisigma complexes is suggested. The Synechocystis Grad-seq resource is available online at https://sunshine.biologie.uni-freiburg.de/GradSeqExplorer/ providing a comprehensive resource for the functional assignment of RNA-protein complexes and multisubunit protein complexes in a photosynthetic organism.


Asunto(s)
Membranas Intracelulares/metabolismo , Fotosíntesis , Análisis de Secuencia de ARN , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Complejos Multiproteicos/metabolismo , Fotosíntesis/genética , Filogenia , Unión Proteica , Biosíntesis de Proteínas , Proteoma/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Tilacoides/metabolismo , Sistemas Toxina-Antitoxina , Transcriptoma/genética
2.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38469716

RESUMEN

RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.


Asunto(s)
Endorribonucleasas , Synechocystis , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN , Ribonucleasas , Escherichia coli/genética , Escherichia coli/metabolismo , Synechocystis/genética , ARN de Transferencia
3.
Cell Rep ; 43(7): 114485, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996066

RESUMEN

How CRISPR-Cas systems defend bacteria and archaea against invading genetic elements is well understood, but less is known about their regulation. In the cyanobacterium Synechocystis sp. PCC 6803, the expression of one of the three different CRISPR-Cas systems responds to changes in environmental conditions. The cas operon promoter of this system is controlled by the light- and redox-responsive transcription factor RpaB binding to an HLR1 motif, resulting in transcriptional activation at low light intensities. However, the strong promoter that drives transcription of the cognate repeat-spacer array is not controlled by RpaB. Instead, the leader transcript is bound by the redox-sensitive RNA helicase CrhR. Crosslinking coupled with mass spectrometry analysis and site-directed mutagenesis revealed six residues involved in the CrhR-RNA interaction, with C371 being critically important. Thus, the expression of a type III-Dv CRISPR-Cas system is linked to the redox status of the photosynthetic cell at the transcriptional and post-transcriptional levels.


Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , ARN Helicasas DEAD-box , Synechocystis , Sistemas CRISPR-Cas/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Synechocystis/metabolismo , Synechocystis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA