Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2306863120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127978

RESUMEN

The gut microbiota is a considerable source of biologically active compounds that can promote intestinal homeostasis and improve immune responses. Here, we used large expression libraries of cloned metagenomic DNA to identify compounds able to sustain an anti-inflammatory reaction on host cells. Starting with a screen for NF-κB activation, we have identified overlapping clones harbouring a heterodimeric ATP-binding cassette (ABC)-transporter from a Firmicutes. Extensive purification of the clone's supernatant demonstrates that the ABC-transporter allows for the efficient extracellular accumulation of three muropeptide precursor, with anti-inflammatory properties. They induce IL-10 secretion from human monocyte-derived dendritic cells and proved effective in reducing AIEC LF82 epithelial damage and IL-8 secretion in human intestinal resections. In addition, treatment with supernatants containing the muropeptide precursor reduces body weight loss and improves histological parameters in Dextran Sulfate Sodium (DSS)-treated mice. Until now, the source of peptidoglycan fragments was shown to come from the natural turnover of the peptidoglycan layer by endogenous peptidoglycan hydrolases. This is a report showing an ABC-transporter as a natural source of secreted muropeptide precursor and as an indirect player in epithelial barrier strengthening. The mechanism described here might represent an important component of the host immune homeostasis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Peptidoglicano/metabolismo , Intestinos/patología , Inflamación/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Antiinflamatorios/metabolismo , Sulfato de Dextran , Colitis/metabolismo , Modelos Animales de Enfermedad , Colon/metabolismo , Ratones Endogámicos C57BL
2.
BMC Genomics ; 15: 499, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24948191

RESUMEN

BACKGROUND: The advent of large-scale gene expression technologies has helped to reveal in eukaryotic cells, the existence of thousands of non-coding transcripts, whose function and significance remain mostly poorly understood. Among these non-coding transcripts, long non-coding RNAs (lncRNAs) are the least well-studied but are emerging as key regulators of diverse cellular processes. In the present study, we performed a survey in bovine Longissimus thoraci of lincRNAs (long intergenic non-coding RNAs not overlapping protein-coding transcripts). To our knowledge, this represents the first such study in bovine muscle. RESULTS: To identify lincRNAs, we used paired-end RNA sequencing (RNA-Seq) to explore the transcriptomes of Longissimus thoraci from nine Limousin bull calves. Approximately 14-45 million paired-end reads were obtained per library. A total of 30,548 different transcripts were identified. Using a computational pipeline, we defined a stringent set of 584 different lincRNAs with 418 lincRNAs found in all nine muscle samples. Bovine lincRNAs share characteristics seen in their mammalian counterparts: relatively short transcript and gene lengths, low exon number and significantly lower expression, compared to protein-encoding genes. As for the first time, our study identified lincRNAs from nine different samples from the same tissue, it is possible to analyse the inter-individual variability of the gene expression level of the identified lincRNAs. Interestingly, there was a significant difference when we compared the expression variation of the 418 lincRNAs with the 10,775 known selected protein-encoding genes found in all muscle samples. In addition, we found 2,083 pairs of lincRNA/protein-encoding genes showing a highly significant correlated expression. Fourteen lincRNAs were selected and 13 were validated by RT-PCR. Some of the lincRNAs expressed in muscle are located within quantitative trait loci for meat quality traits. CONCLUSIONS: Our study provides a glimpse into the lincRNA content of bovine muscle and will facilitate future experimental studies to unravel the function of these molecules. It may prove useful to elucidate their effect on mechanisms underlying the genetic variability of meat quality traits. This catalog will complement the list of lincRNAs already discovered in cattle and therefore will help to better annotate the bovine genome.


Asunto(s)
Músculos/metabolismo , ARN Largo no Codificante/genética , Transcriptoma , Animales , Bovinos , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA