Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(8): 4021-4026, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32029594

RESUMEN

Hydrogen-containing materials are of fundamental as well as technological interest. An outstanding question for both is the amount of hydrogen that can be incorporated in such materials, because that determines dramatically their physical properties such as electronic and crystalline structure. The number of hydrogen atoms in a metal is controlled by the interaction of hydrogens with the metal and by the hydrogen-hydrogen interactions. It is well established that the minimal possible hydrogen-hydrogen distances in conventional metal hydrides are around 2.1 Å under ambient conditions, although closer H-H distances are possible for materials under high pressure. We present inelastic neutron scattering measurements on hydrogen in [Formula: see text] showing nonexpected scattering at low-energy transfer. The analysis of the spectra reveals that these spectral features in part originate from hydrogen vibrations confined by neighboring hydrogen at distances as short as 1.6 Å. These distances are much smaller than those found in related hydrides, thereby violating the so-called Switendick criterion. The results have implications for the design and creation of hydrides with additional properties and applications.

2.
Angew Chem Int Ed Engl ; 62(45): e202307367, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37712521

RESUMEN

Efficiency losses due to side reactions are one of the main challenges in battery development. Despite providing valuable insights, the results of standard analysis on the individual components cannot be simply extrapolated to the full operating system. Therefore, non-destructive, and high resolution approaches that allow the investigation of the full system are desired. Herein, we combined neutron radiography and tomography with electrical monitoring of the state of charge of commercial Ni-mischmetal hydride batteries, to track the exchange and transport of hydrogen under operating conditions. This non-destructive approach allowed both the quantification of the hydrogen distribution in the electrodes in 4D, and the distinction between the electrochemically exchanged hydrogen and the hydrogen gas pressure generated by side reactions, as a function of the applied potential and current. One of the most counter-intuitive observation is that the generation of hydrogen gas during discharge depends on the charging state of the battery. The results presented provide critical new insights in the mechanisms governing the electrochemical processes during Nimischmetal hydride battery operation, and also pave the way for the extrapolation of this approach to the investigation of state-of-the-art Li-ions batteries.

3.
Phys Chem Chem Phys ; 24(44): 27394-27405, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36331375

RESUMEN

Heterogeneous catalysts are materials with a complex structure at the atomic to mesoscopic scale, which depends on a variety of empirical parameters applied during preparation and processing. Although model systems clarified the general physical and chemical phenomena relevant to catalysis, such as hydrogen spillover, a rational design of heterogeneous catalysts is impeded by the sheer number of parameters. Combinatorial methods and high-throughput techniques have the potential of accelerating the development of optimal catalysts. We describe here a combinatorial approach based on hydrogen adsorption/absorption and hydrogen-deuterium exchange quantified by neutron imaging. The method coined CONI is capable of measuring more than 50 samples simultaneously. As a proof of concept, we study Pt catalyzed WO3 as an archetypal spillover system, and a Ni-catalyst supported on Al2O3 and SiO2. CONI is ideally suited to distinguish between irreversible surface adsorption and reversible bulk absorption, providing quantitative information. Concretely, CONI yields the number of reversibly adsorbed/absorbed hydrogen atoms in and on a great number of various catalysts in a single experiment.

4.
Chimia (Aarau) ; 76(3): 192-202, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069733

RESUMEN

The kinetics of most of chemical energy storage and conversion processes is rate-limited by the mass transport through matter. There is an uncertainty on the corresponding kinetic models, especially if based solely on kinetic theory. Henceforth analytical strategies coupled to setups, in order to capture data for overcoming this limitation are essential. Operando chemical imaging of the kinetics process supports the identification of rate-limiting barriers and definition of actionable kinetic insights. After an overview of the chemical and physical processes in various energy storage/conversion systems, and examples of chemical imaging applied on them, analytical challenges are discussed with particular focus on novel methods and fundamental limitations. Despite convincing success technologies, various scientific challenges of operando chemical kinetics await solution. Apart from technical improvements of the analysis instrumentation, promising developments are seen in advanced digital science.

5.
Phys Chem Chem Phys ; 22(40): 22979-22988, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33030152

RESUMEN

Although of pivotal importance in heterogeneous hydrogenation reactions, the amount of hydrogen on catalysts during reactions is seldom known. We demonstrate the use of neutron imaging to follow and quantify hydrogen containing species in Cu/ZnO catalysts operando during methanol synthesis. The steady-state measurements reveal that the amount of hydrogen containing intermediates is related to the reaction yields of CO and methanol, as expected from simple considerations of the likely reaction mechanism. The time-resolved measurements indicate that these intermediates, despite indispensable within the course of the reaction, slow down the overall reaction steps. Hydrogen-deuterium exchange experiments indicate that hydrogen reduction of Cu/ZnO nano-composites modifies the catalyst in such a way that at operating temperatures, hydrogen is dynamically absorbed in the ZnO-nanoparticles. This explains the extraordinary good catalysis of copper if supported on ZnO by its ability to act as a hydrogen reservoir supplying hydrogen to the surface covered by CO2, intermediates, and products during catalysis.

6.
Chemphyschem ; 20(10): 1398-1403, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30561889

RESUMEN

The catalytic hydrogenation of CO2 includes the dissociation of hydrogen and further reaction with CO2 and intermediates. We investigate how the amount of hydrogen in the bulk of the catalyst affects the hydrogenation reaction taking place at the surface. For this, we developed an experimental setup described herein, based on a magnetic suspension balance and an infrared spectrometer, and measured pressure-composition isotherms of the Pd-H system under conditions relevant for CO2 reduction. The addition of CO2 has no influence on the measured hydrogen absorption isotherms. The pressure dependence of the CO formation rate changes suddenly upon formation of the ß-PdH phase. This effect is attributed to a smaller surface coverage of hydrogen due to repulsive electronic interactions affecting both bulk and surface hydrogen.

7.
Adv Sci (Weinh) ; 11(7): e2304603, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070182

RESUMEN

Provision of atomic hydrogen by hydrogen dissociation catalysts only moderately accelerates the hydrogenation rate of magnesium. They shed light on this well-known but technically challenging fact through a combined approach using an unconventional surface science technique together with Density Functional Theory (DFT) calculations. The calculations demonstrate the drastic electronic structure changes during transformation of Mg to MgH2 , which make fractional hydrogen coverage on the surface, as well as substoichiometric hydrogen content in the bulk energetically unfavorable. Reflecting Electron Energy Loss Spectroscopy (REELS) is used to measure the surface and bulk plasmon during hydrogen sorption in magnesium. The measurements show that the hydrogenation proceeds via the growth of magnesium hydride without the presence of chemisorbed hydrogen on the metallic magnesium surface exactly as indicated by the calculations. This is due to the low stability of sub-stoichiometric amounts of chemisorbed H correlating with the unfavorable charge state of Mg. They are merely bound to the unchanged adjacent Mg layers, thereby explaining the failure of classical hydrogenation catalysts, which effectively only hydrogenate Mg in their direct vicinity. The acceleration of hydrogen sorption kinetics in Mg must affect the polarization in the interface between Mg and MgH2 during hydrogenation.

8.
Chem Mater ; 35(16): 6323-6331, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37637010

RESUMEN

Aliovalent I-V-VI semiconductor nanocrystals are promising candidates for thermoelectric and optoelectronic applications. Famatinite Cu3SbSe4 stands out due to its high absorption coefficient and narrow band gap in the mid-infrared spectral range. This paper combines experiment and theory to investigate the synthesis and electronic structure of colloidal CuxSbSe4 nanocrystals. We achieve predictive composition control of size-uniform CuxSbSe4 (x = 1.9-3.4) nanocrystals. Density functional theory (DFT)-parametrized tight-binding simulations on nanocrystals show that the more the Cu-vacancies, the wider the band gap of CuxSbSe4 nanocrystals, a trend which we also confirm experimentally via FTIR spectroscopy. We show that SbCu antisite defects can create mid-gap states, which may give rise to sub-bandgap absorption. This work provides a detailed study of CuxSbSe4 nanocrystals and highlights the potential opportunities as well as challenges for their application in infrared devices.

9.
Adv Sci (Weinh) ; 9(11): e2105819, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35195354

RESUMEN

Inspired by the solar-light-driven oxygen transportation in aquatic plants, a biomimetic sustainable light-driven aerogel pump with a surface layer containing black manganese oxide (MnO2 ) as an optical absorber is developed. The flow intensity of the pumped air is controlled by the pore structure of nanofilbrillated cellulose, urea-modified chitosan, or polymethylsilsesquioxane (PMSQ) aerogels. The MnO2 -induced photothermal conversion drives both the passive gas flow and the catalytic degradation of volatile organic pollutants. All investigated aerogels demonstrate superior pumping compared to benchmarked Knudsen pump systems, but the inorganic PMSQ aerogels provide the highest flexibility in terms of the input power and photothermal degradation activity. Aerogel light-driven multifunctional gas pumps offer a broad future application potential for gas-sensing devices, air-quality mapping, and air quality control systems.


Asunto(s)
Contaminantes Ambientales , Compuestos de Manganeso , Biomimética , Celulosa/química , Óxidos
10.
J Phys Chem C Nanomater Interfaces ; 125(45): 25339-25349, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34824662

RESUMEN

Titanium is an excellent getter material, catalyzes gas-solid reactions such as hydrogen absorption in lightweight metal hydrides and complex metal hydrides and has recently been shown as a potential ammonia synthesis catalyst. However, knowledge of the surface properties of this metal is limited when it absorbs large quantities of hydrogen at operation conditions. Both the conceptual description of such a surface as well as the experimental determination of surface hydrogen concentration on hydride-forming metals is challenging due to the dynamic bulk properties and the incompatibility of traditional surface science methods with the hydrogen pressure needed to form the metal hydride, respectively. In this paper, the surface pressure-composition isotherms of the titanium-hydrogen system are measured by operando reflecting electron energy loss spectroscopy (REELS). The titanium thin films were deposited on and hydrogenated through a palladium membrane, which provides an atomic hydrogen source under ultrahigh vacuum conditions. The measurements are supported by density functional theory calculations providing a complete picture of the hydrogen-deficient surface of TiH2 being the basis of its high catalytic activity.

11.
Adv Sci (Weinh) ; 8(19): e2101764, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34369111

RESUMEN

Thermophotovoltaic devices have promising applications for energy conversion. However, current conversion efficiency of chemical energy to light is very low, limited by the competing process of heat dissipation released as black body radiation. From a fundamental point of view, the direct conversion of chemical energy into light without this detour is possible. This so called cataluminescence from methanol combustion over Er-substituted SrTiO3 with high efficiency is demonstrated. The catalytically active quaternary perovskites Er0.15 La0.15 Sr0.55 Ti0.95 Cu0.05 O3 - δ exsolute and reabsorb metallic Cu particles onto the surface in reducing and oxidizing conditions, respectively. Thus, it is able to manipulate the surface structure and investigate its influence on the catalytic as well as luminescent properties. The fuel to air ratio around the stoichiometry point changes the conditions from reducing to oxidizing and thereby alters the surface properties. This is evidenced by post mortem X-ray diffraction and X-ray photoemission as well as operando optical spectroscopy. Cataluminescence takes place under oxidizing conditions (lean fuel to air mixture) on the Er-perovskite oxide with a strong selective near infrared emission, while reducing conditions stimulate formation of plasmonic Cu-nanoparticles, which emit black body radiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA