Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Neurochem Res ; 48(8): 2390-2405, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36964823

RESUMEN

Progressive neurodegenerative disorders such as Parkinson Disease (PD) lack curative or long-term treatments. At the same time, the increase of the worldwide elderly population and, consequently, the extension in the prevalence of age-related diseases have promoted research interest in neurodegenerative disorders. Caenorhabditis elegans is a free-living nematode widely used as an animal model in studies of human diseases. Here we evaluated cannabidiol (CBD) as a possible neuroprotective compound in PD using the C. elegans models exposed to reserpine. Our results demonstrated that CBD reversed the reserpine-induced locomotor alterations and this response was independent of the NPR-19 receptors, an orthologous receptor for central cannabinoid receptor type 1. Morphological alterations of cephalic sensilla (CEP) dopaminergic neurons indicated that CBD also protects neurons from reserpine-induced degeneration. That is, CBD attenuates the reserpine-induced increase of worms with shrunken soma and dendrites loss, increasing the number of worms with intact CEP neurons. Finally, we found that CBD also reduced ROS formation and α-syn protein accumulation in mutant worms. Our findings collectively provide new evidence that CBD acts as neuroprotector in dopaminergic neurons, reducing neurotoxicity and α-syn accumulation highlighting its potential in the treatment of PD.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cannabidiol , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Anciano , Animales , Humanos , Caenorhabditis elegans/metabolismo , alfa-Sinucleína/metabolismo , Animales Modificados Genéticamente , Cannabidiol/farmacología , Reserpina/toxicidad , Reserpina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Modelos Animales de Enfermedad , Receptores Acoplados a Proteínas G/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982672

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disease characterized by mutations in the huntingtin gene (mHtt), causing an unstable repeat of the CAG trinucleotide, leading to abnormal long repeats of polyglutamine (poly-Q) in the N-terminal region of the huntingtin, which form abnormal conformations and aggregates. Alterations in Ca2+ signaling are involved in HD models and the accumulation of mutated huntingtin interferes with Ca2+ homeostasis. Lysosomes are intracellular Ca2+ storages that participate in endocytic and lysosomal degradation processes, including autophagy. Nicotinic acid adenine dinucleotide phosphate (NAADP) is an intracellular second messenger that promotes Ca2+ release from the endo-lysosomal system via Two-Pore Channels (TPCs) activation. Herein, we show the impact of lysosomal Ca2+ signals on mHtt aggregation and autophagy blockade in murine astrocytes overexpressing mHtt-Q74. We observed that mHtt-Q74 overexpression causes an increase in NAADP-evoked Ca2+ signals and mHtt aggregation, which was inhibited in the presence of Ned-19, a TPC antagonist, or BAPTA-AM, a Ca2+ chelator. Additionally, TPC2 silencing revert the mHtt aggregation. Furthermore, mHtt has been shown co-localized with TPC2 which may contribute to its effects on lysosomal homeostasis. Moreover, NAADP-mediated autophagy was also blocked since its function is dependent on lysosomal functionality. Taken together, our data show that increased levels of cytosolic Ca2+ mediated by NAADP causes mHtt aggregation. Additionally, mHtt co-localizes with the lysosomes, where it possibly affects organelle functions and impairs autophagy.


Asunto(s)
Canales de Calcio , Enfermedades Neurodegenerativas , Ratones , Animales , Canales de Calcio/metabolismo , Astrocitos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , NADP/metabolismo , Lisosomas/metabolismo , Autofagia , Calcio/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
J Neurosci Res ; 99(11): 2932-2947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510532

RESUMEN

Mitochondria-associated ER membranes (MAMs) are formed by close and specific components in the contact sites between the endoplasmic reticulum (ER) and mitochondria, which participate in several cell functions, including lipid metabolism, autophagy, and Ca2+ signaling. Particularly, the presence of α-synuclein (α-syn) in MAMs was previously demonstrated, indicating a physical interaction among some proteins in this region and a potential involvement in cell dysfunctions. MAMs alterations are associated with neurodegenerative diseases such as Parkinson's disease (PD) and contribute to the pathogenesis features. Here, we investigated the effects of α-syn on MAMs and Ca2+ transfer from the ER to mitochondria in WT- and A30P α-syn-overexpressing SH-SY5Y or HEK293 cells. We observed that α-syn potentiates the mitochondrial membrane potential (Δψm ) loss induced by rotenone, increases mitophagy and mitochondrial Ca2+ overload. Additionally, in α-syn-overexpressing cells, we found a reduction in ER-mitochondria contact sites through the impairment of the GRP75-IP3R interaction, however, with no alteration in VDAC1-GRP75 interaction. Consequently, after Ca2+ release from the ER, α-syn-overexpressing cells demonstrated a reduction in Ca2+ buffering by mitochondria, suggesting a deregulation in MAM activity. Taken together, our data highlight the importance of the α-syn/MAMs/Ca2+ axis that potentially affects cell functions in PD.


Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico , Humanos , Proteínas de la Membrana , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo
4.
Cell Biol Int ; 45(7): 1459-1467, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33675269

RESUMEN

Although the existence of the renin-angiotensin system (RAS) in the bone marrow is clear, the exact role of this system in hematopoiesis has not yet been fully characterized. Here the direct role of angiotensin II (AngII) in hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), granulocyte/monocyte progenitors (GMPs), and megakaryocytes/erythroid progenitors (MEPs), using a system of coculture with stromal S17 cells. Flow cytometry analysis showed that AngII increases the percentage of HSC and GMP, while reducing CMP with no effect on MEP. According to these data, AngII increased the total number of mature Gr-1+ /Mac-1+ cells without changes in Terr119+ cells. AngII does not induce cell death in the population of LSK cells. In these populations, treatment with AngII decreases the expression of Ki67+ protein with no changes in the Notch1 expression, suggesting a role for AngII on the quiescence of immature cells. In addition, exposure to AngII from murine bone marrow cells increased the number of CFU-GM and BFU-E in a clonogenic assay. In conclusion, our data showed that AngII is involved in the regulation of hematopoiesis with a special role in HSC, suggesting that AngII should be evaluated in coculture systems, especially in cases that require the expansion of these cells in vitro, still a significant challenge for therapeutic applications in humans.


Asunto(s)
Angiotensina II/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Animales , Diferenciación Celular , Línea Celular , Técnicas de Cocultivo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Ratones , Células del Estroma/metabolismo
5.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920748

RESUMEN

The family of coronaviruses (CoVs) uses the autophagy machinery of host cells to promote their growth and replication; thus, this process stands out as a potential target to combat COVID-19. Considering the different roles of autophagy during viral infection, including SARS-CoV-2 infection, in this review, we discuss several clinically used drugs that have effects at different stages of autophagy. Among them, we mention (1) lysosomotropic agents, which can prevent CoVs infection by alkalinizing the acid pH in the endolysosomal system, such as chloroquine and hydroxychloroquine, azithromycin, artemisinins, two-pore channel modulators and imatinib; (2) protease inhibitors that can inhibit the proteolytic cleavage of the spike CoVs protein, which is necessary for viral entry into host cells, such as camostat mesylate, lopinavir, umifenovir and teicoplanin and (3) modulators of PI3K/AKT/mTOR signaling pathways, such as rapamycin, heparin, glucocorticoids, angiotensin-converting enzyme inhibitors (IECAs) and cannabidiol. Thus, this review aims to highlight and discuss autophagy-related drugs for COVID-19, from in vitro to in vivo studies. We identified specific compounds that may modulate autophagy and exhibit antiviral properties. We hope that research initiatives and efforts will identify novel or "off-label" drugs that can be used to effectively treat patients infected with SARS-CoV-2, reducing the risk of mortality.


Asunto(s)
Autofagia/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Terapia Molecular Dirigida , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Transducción de Señal , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
6.
Neurochem Res ; 45(11): 2749-2761, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32915398

RESUMEN

Although the etiology of Parkinson's disease (PD) is multifactorial, it has been linked to abnormal accumulation of α-synuclein (α-syn) in dopaminergic neurons, which could lead to dysfunctions on intracellular organelles, with potential neurodegeneration. Patients with familial early-onset PD frequently present mutation in the α-syn gene (SNCA), which encodes mutant α-syn forms, such as A30P and A53T, which potentially regulate Ca2+ unbalance. Here we investigated the effects of overexpression of wild-type α-syn (WT) and the mutant forms A30P and A53T, on modulation of lysosomal Ca2+ stores and further autophagy activation. We found that in α-syn-overexpressing cells, there was a decrease in Ca2+ released from endoplasmic reticulum (ER) which is related to the increase in lysosomal Ca2+ release, coupled to lysosomal pH alkalization. Interestingly, α-syn-overexpressing cells showed lower LAMP1 levels, and a disruption of lysosomal morphology and distribution, affecting autophagy. Interestingly, all these effects were more evident with A53T mutant isoform when compared to A30P and WT α-syn types, indicating that the pathogenic phenotype for PD is potentially related to impairment of α-syn degradation. Taken together, these events directly impact PD-related dysfunctions, being considered possible molecular targets for neuroprotection.


Asunto(s)
Autofagia/fisiología , Lisosomas/metabolismo , alfa-Sinucleína/metabolismo , Señalización del Calcio/fisiología , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Mutación , alfa-Sinucleína/genética
7.
J Neurosci Res ; 96(1): 160-171, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28573674

RESUMEN

α-Synuclein is the major component of neuronal cytoplasmic aggregates called Lewy bodies, the main pathological hallmark of Parkinson disease. Although neurons are the predominant cells expressing α-synuclein in the brain, recent studies have demonstrated that primary astrocytes in culture also express α-synuclein and regulate α-synuclein trafficking. Astrocytes have a neuroprotective role in several detrimental brain conditions; we therefore analyzed the effects of the overexpression of wild-type α-synuclein and its A30P and A53T mutants on autophagy and apoptosis. We observed that in immortalized astrocyte cell lines, overexpression of α-synuclein proteins promotes the decrease of LC3-II and the increase of p62 protein levels, suggesting the inhibition of autophagy. When these cells were treated with rotenone, there was a loss of mitochondrial membrane potential, especially in cells expressing mutant α-synuclein. The level of this decrease was related to the toxicity of the mutants because they show a more intense and sustained effect. The decrease in autophagy and the mitochondrial changes in conjunction with parkin expression levels may sensitize astrocytes to apoptosis.


Asunto(s)
Apoptosis/fisiología , Astrocitos/metabolismo , Autofagia/fisiología , alfa-Sinucleína/biosíntesis , Animales , Astrocitos/patología , Línea Celular Transformada , Células Cultivadas , Femenino , Expresión Génica , Masculino , Ratas , Ratas Wistar , alfa-Sinucleína/genética
8.
Exp Cell Res ; 322(2): 313-23, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24583400

RESUMEN

Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24h incubation with 100 µM QUIN, cells were exposed to (32)P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca(2+)/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 µM), KN93 (10 µM) and staurosporin (10nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca(2+) quelators (1mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca(2+) influx through voltage-dependent Ca(2+) channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Astrocitos/citología , Cuerpo Estriado/citología , Ácido Quinolínico/farmacología , Citoesqueleto de Actina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Western Blotting , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamatos/metabolismo , Técnicas para Inmunoenzimas , Fosforilación/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar , Vimentina/metabolismo
9.
J Cell Biochem ; 115(1): 42-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24038146

RESUMEN

Myeloid differentiation is a complex process whereby mature granulocytes or monocytes/macrophages are derived from a common myeloid progenitor through the coordinated action of hematopoietic cytokines. In this study, we explored the role of the Ca(2+)i signaling transduction pathway in the commitment of hematopoietic stem/progenitor cells to either the monocytic or granulocytic lineage in response to macrophage colony-stimulating factor (M-CSF) and granulocyte colony-stimulating factor (G-CSF). M-CSF and G-CSF induce cell expansion and monocyte or granulocyte differentiation, respectively, without affecting the percentage of hematopoietic progenitor cells. Colony-forming units (CFUs) and flow cytometry demonstrated the involvement of phospholipase Cγ (PLCγ) and protein kinase C (PKC) in monocyte/granulocyte commitment. In addition, using flow cytometry and RNA interference, we identified PLCγ2 as the PLCγ isoform that participates in this cell expansion and differentiation. Differences in signaling elicited by M-CSF and G-CSF were observed. The M-CSF-related effects were associated with the activation of ERK1/2 and nuclear factor of activated T-cells (NFAT); the inhibition of both molecules reduced the number of colonies in a CFU assay. In contrast, using flow cytometry and confocal evaluation, we demonstrated that G-CSF activated Jak-1 and STAT-3. Additionally, the effects induced by G-CSF were also related with the participation of Ca(2+) calmodulin kinase II and the transcription factor PU.1. STAT-3 activation and the increase of PU.1 expression were sensitive to PLC inhibition by U73122. These data show that PLCγ2 and PKC are important upstream signals that regulate myelopoiesis through cytokines, and differences in M-CSF and G-CSF downstream signaling were identified.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Fosfolipasa C gamma/metabolismo , Proteína Quinasa C/metabolismo , Animales , Señalización del Calcio , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Estrenos/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Granulocitos/efectos de los fármacos , Granulocitos/metabolismo , Janus Quinasa 1/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Factores de Transcripción NFATC/metabolismo , Fosfolipasa C gamma/antagonistas & inhibidores , Fosfolipasa C gamma/genética , Proteína Quinasa C/genética , Proteínas Proto-Oncogénicas/metabolismo , Pirrolidinonas/farmacología , Interferencia de ARN , Factor de Transcripción STAT3/metabolismo , Transactivadores/metabolismo
10.
Eur J Med Chem ; 264: 116034, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103541

RESUMEN

Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Cisplatino/farmacología , Paladio/farmacología , Caenorhabditis elegans , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Osteosarcoma/patología , Neoplasias Óseas/patología , Línea Celular Tumoral
11.
Nutrients ; 16(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337668

RESUMEN

Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Lipopolisacáridos , Humanos , Lipopolisacáridos/farmacología , Ácido Ascórbico/farmacología , Receptores Purinérgicos P2X7 , Autofagia , Adenosina Trifosfato/farmacología
12.
Brain Behav Immun ; 29: 39-50, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23246529

RESUMEN

The reports regarding the mutual influence between the central nervous system and the immune system constitute a vast and somewhat controversial body of literature. Stress is known to disturb homeostasis, impairing immunological functions. In this study, we investigated the hematopoietic response of Chlorella vulgaris (CV)-treated mice exposed to single (SST) and repeated stress (RST). We observed a reduction in the numbers of hematopoietic progenitors (HP) in the bone marrow and long-term bone marrow cultures (LTBMC) using flow cytometry and a coinciding decrease in the number of granulocyte-macrophage colonies (CFU-GM) after treatment with both stressors, but SST caused a more profound suppression. We observed a proportional increase in the colony-stimulating activity (CSA) of the serum of animals subjected to SST or RST. In the bone marrow, SST and RST induced a decrease in both mature myeloid and lymphoid populations but did not affect pluripotent hematopoietic progenitors (Lin(-)Sca-1(+)c-kit(+), LSK), and again, a more profound suppression was observed after SST. We further quantified the levels of interleukin-1α (IL-1α) and interleukin-6 (IL-6) and the number of myeloid cells in LTBMC. Both SST and RST reduced the levels of these cytokines to similar degrees. The myeloid population was also reduced in LTBMC, and SST induced a more intense suppression. Importantly, CV treatment prevented the changes produced by SST and RST in all of the parameters evaluated. Together, our results suggest that CV treatment is an effective tool for the prophylaxis of myelosuppression caused by single or repeated stressors.


Asunto(s)
Chlorella vulgaris/química , Hematopoyesis/fisiología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/fisiopatología , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1alfa/biosíntesis , Interleucina-6/biosíntesis , Masculino , Ratones , Ratones Endogámicos BALB C , Células Mieloides/efectos de los fármacos , Células Madre/efectos de los fármacos , Estrés Psicológico/líquido cefalorraquídeo
13.
Neurochem Res ; 38(11): 2418-26, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24085658

RESUMEN

Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by severe striatal atrophy with extensive neuronal loss and gliosis. Although the molecular mechanism is not well understood, experimental studies use the irreversible mitochondrial inhibitor 3-nitropropionic acid (3-NP) to mimic the neuropathological features of HD. In this study, the role of autophagy as a neuroprotective mechanism against 3-NP-induced astrocyte cytotoxicity was evaluated. Autophagy is a catabolic process that is essential for the turnover of cytosolic proteins and organelles and is involved in the modulation of cell death and survival. We showed that 3-NP-induced apoptosis, which was accompanied by Bax and Beclin-1 upregulation, was dependent on acidic vesicular organelle (AVO) formation after a continuous exposure to 3-NP for 12 h. The upregulation of Bax and Beclin-1 as well as AVO formation were normalized 24 h after 3-NP exposure.


Asunto(s)
Astrocitos/patología , Autofagia , Nitrocompuestos/toxicidad , Propionatos/toxicidad , Adenina/análogos & derivados , Adenina/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/biosíntesis , Autofagia/efectos de los fármacos , Beclina-1 , Modelos Animales de Enfermedad , Enfermedad de Huntington/fisiopatología , Ratones , Sirolimus , Proteína X Asociada a bcl-2/biosíntesis
14.
Toxicol In Vitro ; 90: 105603, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37121360

RESUMEN

Sorafenib, an oral multi-kinase inhibitor, used to treat hepatocellular carcinoma (HCC). However, drug resistance is still common in several HCC patients. This complex mechanism is not yet fully elucidated, driving the search for new therapeutic targets to potentiate the antitumoral effect of sorafenib. Recent findings have linked the expression of Two-Pore Channels (TPCs) receptors with the development and progression of cancer. TPCs receptors are stimulated by NAADP, a Ca2+ messenger, and inhibited by their antagonists Ned-19 and tetrandrine. Here, we investigate the participation of TPCs inhibition in cell death and autophagy in sorafenib-treated HCC cells. Here, we show that the association of sorafenib with tetrandrine increased sorafenib-induced cell death accompanied by increased lysotracker fluorescence intensity. In contrast, these effects were not observed after treating these cells with Ned-19. The pharmacological TPC antagonists by Ned-19 and tetrandrine or siRNA-mediated TPC1/2 inhibition decreased sorafenib-induced Ca2+ release, reinforcing the participation of TPCs in sorafenib HCC responses. Furthermore, the association tetrandrine and sorafenib blocked autophagy through ERK1/2 pathway inhibition, which represents a putative target for potentiating HCC cell death. Therefore, our study proposes the use of tetrandrine analogs with the aim of improving sorafenib therapy. Also, our data also allow us to suggest that TPCs may be a new target in anticancer therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Autofagia
15.
Chin J Integr Med ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38040876

RESUMEN

OBJECTIVE: To evaluate the chemical composition and effects of Artemisia vulgaris (AV) hydroalcoholic extract (HEAV) on breast cancer cells (MCF-7 and SKBR-3), chronic myeloid leukemia (K562) and NIH/3T3 fibroblasts. METHODS: Phytochemical analysis of HEAV was done by high-performance liquid chromatography-mass (HPLC) spectrometry. Viability and cell death studies were performed using trypan blue and Annexin/FITC-7AAD, respectively. Ferrostatin-1 (Fer-1) and necrostatin-1 (Nec-1) were used to assess the mode of HEAV-induced cell death and acetoxymethylester (BAPTA-AM) was used to verify the involvement of cytosolic calcium in this event. Cytosolic calcium measurements were made using Fura-2-AM. RESULTS: HEAV decreased the viability of MCF-7, SKBR-3 and K562 cells (P<0.05). The viability of HEAV-treated K562 cells was reduced compared to HEAV-exposed fibroblasts (P<0.05). Treatment of K562 cells with HEAV induced cell death primarily by late apoptosis and necrosis in assays using annexin V-FITC/7-AAD (P<0.05). The use of Nec-1 and Fer-1 increased the viability of K562 cells treated with HEAV relative to cells exposed to HEAV alone (P<0.01). HEAV-induced Ca2+ release mainly from lysosomes in K562 cells (P<0.01). Furthermore, BAPTA-AM, an intracellular Ca2+ chelator, decreased the number of non-viable cells treated with HEAV (P<0.05). CONCLUSIONS: HEAV is cytotoxic and activates several modalities of cell death, which are partially dependent on lysosomal release of Ca2+. These effects may be related to artemisinin and caffeoylquinic acids, the main compounds identified in HEAV.

16.
J Biol Chem ; 286(32): 27875-81, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21610076

RESUMEN

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing messenger that in many cells releases Ca(2+) from the endolysosomal system. Recent studies have shown that NAADP-induced Ca(2+) mobilization is mediated by the two-pore channels (TPCs). Whether NAADP acts as a messenger in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that intracellular delivery of NAADP evokes Ca(2+) signals from acidic organelles in rat astrocytes and that these signals are potentiated upon overexpression of TPCs. We also show that NAADP increases acidic vesicular organelle formation and levels of the autophagic markers, LC3II and beclin-1. NAADP-mediated increases in LC3II levels were reduced in cells expressing a dominant-negative TPC2 construct. Our data provide evidence that NAADP-evoked Ca(2+) signals mediated by TPCs regulate autophagy.


Asunto(s)
Astrocitos/metabolismo , Autofagia/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , NADP/análogos & derivados , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Astrocitos/citología , Beclina-1 , Canales de Calcio/genética , Canales de Calcio/metabolismo , Células Cultivadas , Humanos , NADP/genética , NADP/metabolismo , Ratas
17.
Stem Cell Reports ; 16(11): 2752-2767, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34653404

RESUMEN

Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell-derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell-derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis.


Asunto(s)
Apoptosis/genética , Autofagia/genética , Predisposición Genética a la Enfermedad/genética , Distrofias Musculares/genética , Mutación , Pentosiltransferasa/genética , Línea Celular , Glicosilación , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Pentosiltransferasa/metabolismo , Células Madre Pluripotentes/metabolismo , RNA-Seq/métodos , Transducción de Señal/genética , Transcriptoma/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo , Síndrome de Walker-Warburg/patología
18.
Sci Rep ; 11(1): 5434, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686185

RESUMEN

Autophagy is a lysosomal catabolic process essential to cell homeostasis and is related to the neuroprotection of the central nervous system. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid present in Cannabis sativa. Many therapeutic actions have been linked to this compound, including autophagy activation. However, the precise underlying molecular mechanisms remain unclear, and the downstream functional significance of these actions has yet to be determined. Here, we investigated CBD-evoked effects on autophagy in human neuroblastoma SH-SY5Y and murine astrocyte cell lines. We found that CBD-induced autophagy was substantially reduced in the presence of CB1, CB2 and TRPV1 receptor antagonists, AM 251, AM 630 and capsazepine, respectively. This result strongly indicates that the activation of these receptors mediates the autophagic flux. Additionally, we demonstrated that CBD activates autophagy through ERK1/2 activation and AKT suppression. Interestingly, CBD-mediated autophagy activation is dependent on the autophagy initiator ULK1, but mTORC1 independent. Thus, it is plausible that a non-canonical pathway is involved. Our findings collectively provide evidence that CBD stimulates autophagy signal transduction via crosstalk between the ERK1/2 and AKT kinases, which represent putative regulators of cell proliferation and survival. Furthermore, our study sheds light on potential therapeutic cannabinoid targets that could be developed for treating neurodegenerative disorders.


Asunto(s)
Autofagia/efectos de los fármacos , Cannabidiol/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Cannabidiol/química , Cannabis/química , Línea Celular Tumoral , Humanos , Ratones
19.
Einstein (Sao Paulo) ; 18: eAO4560, 2020.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-32321078

RESUMEN

OBJECTIVE: To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERß) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability. METHODS: Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy. MCF-7 and SKBr3 cells were incubated with acridine orange for staining of acidic vesicular organelles and analyzed by flow cytometry as an indicator of autophagy. RESULTS: Regarding cell viability in MCF-7 cells, ICI 182,780 and rapamycin, after 48 hours, led to decreased cell proliferation whereas G-1 did not change viability over the same period. The data showed that neither ICI 182,780 nor G-1 led to increased GFP-LC3 puncta in MCF-7 cells over the 4-hour observation period. The cytometry assay showed that ICI 182,780 led to a higher number of acidic vesicular organelles in MCF-7 cells. G-1, in turn, did not have this effect in any of the cell lines. In contrast, ICI 182,780 and G-1 did not decrease cell viability of SKBr3 cells or induce formation of acidic vesicular organelles, which corresponds to the final step of the autophagy process in this cell line. CONCLUSION: The effect of ICI 182,780 on increasing acidic vesicular organelles in estrogen receptor-positive breast cancer cells appears to be associated with its inhibitory effect on estrogen receptors, and GPER does notseem to be involved. Understanding these mechanisms may guide further investigations of these receptors' involvement in cellular processes of breast cancer resistance.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant/farmacología , Receptores Acoplados a Proteínas G/agonistas , Análisis de Varianza , Western Blotting , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/antagonistas & inhibidores , Femenino , Citometría de Flujo/métodos , Humanos , Células MCF-7 , Receptores Acoplados a Proteínas G/análisis , Reproducibilidad de los Resultados , Sirolimus/farmacología , Factores de Tiempo , Transfección/métodos
20.
Cells ; 9(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155825

RESUMEN

Skin melanoma is one of the most aggressive and difficult-to-treat human malignancies, characterized by poor survival rates, thus requiring urgent novel therapeutic approaches. Although metabolic reprogramming has represented so far, a cancer hallmark, accumulating data indicate a high plasticity of cancer cells in modulating cellular metabolism to adapt to a heterogeneous and continuously changing microenvironment, suggesting a novel therapeutic approach for dietary manipulation in cancer therapy. To this aim, we exposed melanoma cells to combined nutrient-restriction/sorafenib. Results indicate that cell death was efficiently induced, with apoptosis representing the prominent feature. In contrast, autophagy was blocked in the final stage by this treatment, similarly to chloroquine, which also enhanced melanoma cell sensitization to combined treatment. Energy stress was evidenced by associated treatment with mitochondrial dysfunction and glycolysis impairment, suggesting metabolic stress determining melanoma cell death. A reduction of tumor growth after cycles of intermittent fasting together with sorafenib treatment was also observed in vivo, reinforcing that the nutrient shortage can potentiate anti-melanoma therapy. Our findings showed that the restriction of nutrients by intermittent fasting potentiates the effects of sorafenib due to the modulation of cellular metabolism, suggesting that it is possible to harness the energy of cancer cells for the treatment of melanoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Sorafenib/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/farmacología , Autofagia , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Nutrientes , Sorafenib/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA