Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Biol Chem ; 299(3): 102974, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738791

RESUMEN

In vivo and in vitro assays, particularly reconstitution using artificial membranes, have established the role of synaptic soluble N-Ethylmaleimide-sensitive attachment protein receptors (SNAREs) VAMP2, Syntaxin-1A, and SNAP-25 in membrane fusion. However, using artificial membranes requires challenging protein purifications that could be avoided in a cell-based assay. Here, we developed a synthetic biological approach based on the generation of membrane cisternae by the integral membrane protein Caveolin in Escherichia coli and coexpression of SNAREs. Syntaxin-1A/SNAP-25/VAMP-2 complexes were formed and regulated by SNARE partner protein Munc-18a in the presence of Caveolin. Additionally, Syntaxin-1A/SNAP-25/VAMP-2 synthesis provoked increased length of E. coli only in the presence of Caveolin. We found that cell elongation required SNAP-25 and was inhibited by tetanus neurotoxin. This elongation was not a result of cell division arrest. Furthermore, electron and super-resolution microscopies showed that synaptic SNAREs and Caveolin coexpression led to the partial loss of the cisternae, suggesting their fusion with the plasma membrane. In summary, we propose that this assay reconstitutes membrane fusion in a simple organism with an easy-to-observe phenotype and is amenable to structure-function studies of SNAREs.


Asunto(s)
Células Artificiales , Fusión de Membrana , Proteínas SNARE , Caveolinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Sintaxina 1/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
J Cell Sci ; 133(18)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32843578

RESUMEN

Axons and dendrites are long and often ramified neurites that need particularly intense plasma membrane (PM) expansion during the development of the nervous system. Neurite growth depends on non-fusogenic Sec22b-Stx1 SNARE complexes at endoplasmic reticulum (ER)-PM contacts. Here, we show that Sec22b interacts with members of the extended synaptotagmin (E-Syt) family of ER lipid transfer proteins (LTPs), and this interaction depends on the longin domain of Sec22b. Overexpression of E-Syts stabilizes Sec22b-Stx1 association, whereas silencing of E-Syts has the opposite effect. Overexpression of wild-type E-Syt2, but not mutants unable to transfer lipids or attach to the ER, increase the formation of axonal filopodia and ramification of neurites in developing neurons. This effect is inhibited by a clostridial neurotoxin cleaving Stx1, and expression of the Sec22b longin domain and a Sec22b mutant with an extended linker between the SNARE and transmembrane domains. We conclude that Sec22b-Stx1 ER-PM contact sites contribute to PM expansion by interacting with LTPs, such as E-Syts.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Retículo Endoplásmico , Neuritas , Membrana Celular/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Neuritas/metabolismo , Proteínas SNARE/metabolismo , Sinaptotagminas/genética
3.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35457172

RESUMEN

Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.


Asunto(s)
Toxinas Botulínicas Tipo A , Tétanos , Animales , Anticuerpos/metabolismo , Ratones , Neurotoxinas/metabolismo , Péptidos/metabolismo , Proteolisis , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Conejos , Ratas , Toxina Tetánica/química , Toxina Tetánica/metabolismo
4.
PLoS Pathog ; 13(8): e1006567, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28800600

RESUMEN

Botulinum neurotoxin serotype C (BoNT/C) is a neuroparalytic toxin associated with outbreaks of animal botulism, particularly in birds, and is the only BoNT known to cleave two different SNARE proteins, SNAP-25 and syntaxin. BoNT/C was shown to be a good substitute for BoNT/A1 in human dystonia therapy because of its long lasting effects and absence of neuromuscular damage. Two triple mutants of BoNT/C, namely BoNT/C S51T/R52N/N53P (BoNT/C α-51) and BoNT/C L200W/M221W/I226W (BoNT/C α-3W), were recently reported to selectively cleave syntaxin and have been used here to evaluate the individual contribution of SNAP-25 and syntaxin cleavage to the effect of BoNT/C in vivo. Although BoNT/C α-51 and BoNT/C α-3W toxins cleave syntaxin with similar efficiency, we unexpectedly found also cleavage of SNAP-25, although to a lesser extent than wild type BoNT/C. Interestingly, the BoNT/C mutants exhibit reduced lethality compared to wild type toxin, a result that correlated with their residual activity against SNAP-25. In spite of this, a local injection of BoNT/C α-51 persistently impairs neuromuscular junction activity. This is due to an initial phase in which SNAP-25 cleavage causes a complete blockade of neurotransmission, and to a second phase of incomplete impairment ascribable to syntaxin cleavage. Together, these results indicate that neuroparalysis of BoNT/C at the neuromuscular junction is due to SNAP-25 cleavage, while the proteolysis of syntaxin provides a substantial, but incomplete, neuromuscular impairment. In light of this evidence, we discuss a possible clinical use of BoNT/C α-51 as a botulinum neurotoxin endowed with a wide safety margin and a long lasting effect.


Asunto(s)
Toxinas Botulínicas/toxicidad , Proteínas Qa-SNARE/metabolismo , Transmisión Sináptica/efectos de los fármacos , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Toxinas Botulínicas/genética , Potenciales Evocados/efectos de los fármacos , Immunoblotting , Inmunohistoquímica , Ratones , Mutación , Unión Neuromuscular/efectos de los fármacos , Técnicas de Placa-Clamp , Proteolisis , Ratas
5.
Cell Microbiol ; 19(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27404998

RESUMEN

Botulinum and tetanus neurotoxins are the most toxic substances known and form the growing family of clostridial neurotoxins. They are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol where their substrates, the three SNARE proteins, are localised. L translocation is accompanied by unfolding, and it has to be reduced and reacquire the native fold to exert its neurotoxicity. The Thioredoxin reductase-Thioredoxin system is responsible for the reduction, but it is unknown whether the refolding of L is spontaneous or aided by host chaperones. Here we report that geldanamycin, a specific inhibitor of heat shock protein 90, hampers the refolding of L after membrane translocation and completely prevents the cleavage of SNAREs. We also found that geldanamycin strongly synergises with PX-12, an inhibitor of thioredoxin, suggesting that the processes of L chain refolding and interchain disulfide reduction are strictly coupled. Indeed we found that the heat shock protein 90 and the Thioredoxin reductase-Thioredoxin system physically interact on synaptic vesicle where they orchestrate a chaperone-redox machinery which is exploited by clostridial neurotoxins to deliver their catalytic part into the cytosol.


Asunto(s)
Citosol/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Pliegue de Proteína , Toxina Tetánica/metabolismo , Transporte de Proteínas , Proteolisis , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo
6.
J Neurochem ; 129(5): 781-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24372287

RESUMEN

Soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal-associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA-transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations. Ternary complex formation by synaptobrevin (green) and syntaxin/synaptosomal-associated protein of 25 kDa (red) is necessary for vesicle fusion, membrane trafficking, and cell homeostasis. Botulinum proteases cleave the three SNAREs proteins as indicated, resulting in a loss of cell viability. Lipofection reagents were used to deliver botulinum proteases or short SNARE peptides into neuroblastoma cells, revealing cytotoxic effects of SNARE fragments.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Péptido Hidrolasas/química , Proteínas SNARE/química , Animales , Western Blotting , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo , Ratones , Microscopía Confocal , Neuroblastoma/patología , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Proteína 25 Asociada a Sinaptosomas/química , Sintaxina 1/química , Transducción Genética , Transfección , Proteína 2 de Membrana Asociada a Vesículas/química
7.
Curr Top Microbiol Immunol ; 364: 139-57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23239352

RESUMEN

Seven serologically distinct botulinum neurotoxins and tetanus neurotoxin which cause the diseases botulism and tetanus constitute the clostridial neurotoxin family. Like many other bacterial protein toxins they exhibit a modular structure. One domain mediates highly specific binding to target cells and endocytosis, while the second translocates the third, a catalytic domain across the endosomal membrane to the target cell cytosol. In case of Clostridial neurotoxins (CNT), the latter acts as extremely specific Zn(2+)-dependent metalloproteinase. The various serotypes proteolyze each one particular peptide bond in one of the three SNARE proteins, which are the core of the membrane fusion apparatus for synaptic vesicles. SNARE cleavage causes the blockade of neurotransmitter release. This chapter details the molecular basis for the highly selective substrate recognition and cleavage mechanism of CNT.


Asunto(s)
Inhibidores de la Captación de Neurotransmisores/metabolismo , Proteolisis , Proteínas SNARE/metabolismo , Transmisión Sináptica , Toxina Tetánica/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Clostridium/metabolismo , Endocitosis , Activación Enzimática , Exocitosis , Humanos , Hidrólisis , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Zinc/metabolismo
8.
Biochem J ; 453(1): 37-47, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23621114

RESUMEN

The highly specific binding and uptake of BoNTs (botulinum neurotoxins; A-G) into peripheral cholinergic motoneurons turns them into the most poisonous substances known. Interaction with gangliosides accumulates the neurotoxins on the plasma membrane and binding to a synaptic vesicle membrane protein leads to neurotoxin endocytosis. SV2 (synaptic vesicle glycoprotein 2) mediates the uptake of BoNT/A and /E, whereas Syt (synaptotagmin) is responsible for the endocytosis of BoNT/B and /G. The Syt-binding site of the former was identified by co-crystallization and mutational analyses. In the present study we report the identification of the SV2-binding interface of BoNT/E. Mutations interfering with SV2 binding were located at a site that corresponds to the Syt-binding site of BoNT/B and at an extended surface area located on the back of the conserved ganglioside-binding site, comprising the N- and C-terminal half of the BoNT/E-binding domain. Mutations impairing the affinity also reduced the neurotoxicity of full-length BoNT/E at mouse phrenic nerve hemidiaphragm preparations demonstrating the crucial role of the identified binding interface. Furthermore, we show that a monoclonal antibody neutralizes BoNT/E activity because it directly interferes with the BoNT/E-SV2 interaction. The results of the present study suggest a novel mode of binding for BoNTs that exploit SV2 as a cell surface receptor.


Asunto(s)
Toxinas Botulínicas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Sitios de Unión , Toxinas Botulínicas/genética , Toxinas Botulínicas/inmunología , Humanos , Ratones , Mutación
9.
Biochemistry ; 52(22): 3930-8, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23647335

RESUMEN

Botulinum neurotoxins (BoNTs) block neurotransmitter release by proteolyzing SNARE proteins in peripheral nerve terminals. Entry into neurons occurs subsequent to interaction with gangliosides and a synaptic vesicle protein. Isoforms I and II of synaptotagmin were shown to act as protein receptors for two of the seven BoNT serotypes, BoNT/B and BoNT/G, and for mosaic-type BoNT/DC. BoNT/B and BoNT/G exhibit a homologous binding site for synaptotagmin whose interacting part adopts helical structure upon binding to BoNT/B. Whereas the BoNT/B-synaptotagmin-II interaction has been elucidated in molecular detail, corresponding information about BoNT/G is lacking. Here we systematically mutated the synaptotagmin binding site in BoNT/G and performed a comparative binding analysis with mutants of the cell binding subunit of BoNT/B. The results suggest that synaptotagmin takes the same overall orientation in BoNT/B and BoNT/G governed by the strictly conserved central parts of the toxins' binding site. The surrounding nonconserved areas differently contribute to receptor binding. Reciprocal mutations Y1186W and L1191Y increased the level of binding of BoNT/G approximately to the level of BoNT/B affinity, suggesting a similar synaptotagmin-bound state. The effects of the mutations were confirmed by studying the activity of correspondingly mutated full-length BoNTs. On the basis of these data, molecular modeling experiments were employed to reveal an atomistic model of BoNT/G-synaptotagmin recognition. These data suggest a reduced length and/or a bend in the C-terminal part of the synaptotagmin helix that forms upon contact with BoNT/G as compared with BoNT/B and are in agreement with the data of the mutational analyses.


Asunto(s)
Toxinas Botulínicas/metabolismo , Sinaptotagmina II/metabolismo , Animales , Sitios de Unión , Toxinas Botulínicas/genética , Toxinas Botulínicas/toxicidad , Toxinas Botulínicas Tipo A , Bovinos , Gangliósido G(M1)/análogos & derivados , Gangliósido G(M1)/metabolismo , Gangliósidos/metabolismo , Lisina/metabolismo , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/genética , Tirosina/metabolismo
10.
Biochem Biophys Res Commun ; 430(1): 38-42, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23200837

RESUMEN

Tetanus and botulinum neurotoxins act inside nerve terminals and, therefore, they have to translocate across a membrane to reach their targets. This translocation is driven by a pH gradient, acidic on the cis side and neutral on the cytosol. Recently, a protocol to induce translocation from the plasma membrane was established. Here, we have used this approach to study the temperature dependence and time course of the entry of the L chain of tetanus neurotoxin and of botulinum neurotoxins type C and D across the plasma membrane of cerebellar granular neurons. The time course of translocation of the L chain varies for the three neurotoxins, but it remains in the range of minutes at 37 °C, whilst it takes much longer at 20 °C. BoNT/C does not enter neurons at 20 °C. Translocation also depends on the dimension of the pH gradient. These data are discussed with respect to the contribution of the membrane translocation step to the total time to paralysis and to the low toxicity of these neurotoxins in cold-blood vertebrates.


Asunto(s)
Toxinas Botulínicas/metabolismo , Membrana Celular/enzimología , Metaloendopeptidasas/metabolismo , Toxina Tetánica/metabolismo , Animales , Toxinas Botulínicas/toxicidad , Células Cultivadas , Concentración de Iones de Hidrógeno , Metaloendopeptidasas/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Biosíntesis de Proteínas , Ratas , Proteína 25 Asociada a Sinaptosomas/metabolismo , Temperatura , Toxina Tetánica/toxicidad , Factores de Tiempo
11.
Proc Natl Acad Sci U S A ; 107(42): 18197-201, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20921391

RESUMEN

Generation of supramolecular architectures through controlled linking of suitable building blocks can offer new perspectives to medicine and applied technologies. Current linking strategies often rely on chemical methods that have limitations and cannot take full advantage of the recombinant technologies. Here we used SNARE proteins, namely, syntaxin, SNAP25, and synaptobrevin, which form stable tetrahelical complexes that drive fusion of intracellular membranes, as versatile tags for irreversible linking of recombinant and synthetic functional units. We show that SNARE tagging allows stepwise production of a functional modular medicinal toxin, namely, botulinum neurotoxin type A, commonly known as BOTOX. This toxin consists of three structurally independent units: Receptor-binding domain (Rbd), Translocation domain (Td), and the Light chain (Lc), the last being a proteolytic enzyme. Fusing the receptor-binding domain with synaptobrevin SNARE motif allowed delivery of the active part of botulinum neurotoxin (Lc-Td), tagged with SNAP25, into neurons. Our data show that SNARE-tagged toxin was able to cleave its intraneuronal molecular target and to inhibit release of neurotransmitters. The reassembled toxin provides a safer alternative to existing botulinum neurotoxin and may offer wider use of this popular research and medical tool. Finally, SNARE tagging allowed the Rbd portion of the toxin to be used to deliver quantum dots and other fluorescent markers into neurons, showing versatility of this unique tagging and self-assembly technique. Together, these results demonstrate that the SNARE tetrahelical coiled-coil allows controlled linking of various building blocks into multifunctional assemblies.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Proteínas R-SNARE/química , Proteínas SNARE/química , Toxinas Botulínicas Tipo A/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo
12.
J Biol Chem ; 286(13): 11370-81, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21292765

RESUMEN

Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio , Exocitosis , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Vesículas Secretoras/metabolismo , Animales , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/genética , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Ionomicina/farmacología , Ionóforos/farmacología , Ratones , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patología , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/genética , Receptores Purinérgicos P2X7/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Secretoras/genética , Vesículas Secretoras/patología , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
13.
Mol Microbiol ; 81(1): 143-56, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21542861

RESUMEN

The seven botulinum neurotoxins (BoNT) cause muscle paralysis by selectively cleaving core components of the vesicular fusion machinery. Their extraordinary activity primarily relies on highly specific entry into neurons. Data on BoNT/A, B, E, F and G suggest that entry follows a dual receptor interaction with complex gangliosides via an established ganglioside binding region and a synaptic vesicle protein. Here, we report high resolution crystal structures of the BoNT/C cell binding fragment alone and in complex with sialic acid. The WY-motif characteristic of the established ganglioside binding region was located on an exposed loop. Sialic acid was co-ordinated at a novel position neighbouring the binding pocket for synaptotagmin in BoNT/B and G and the sialic acid binding site in BoNT/D and TeNT respectively. Employing synaptosomes and immobilized gangliosides binding studies with BoNT/C mutants showed that the ganglioside binding WY-loop, the newly identified sialic acid-co-ordinating pocket and the area corresponding to the established ganglioside binding region of other BoNTs are involved in ganglioside interaction. Phrenic nerve hemidiaphragm activity tests employing ganglioside deficient mice furthermore evidenced that the biological activity of BoNT/C depends on ganglioside interaction with at least two binding sites. These data suggest a unique cell binding and entry mechanism for BoNT/C among clostridial neurotoxins.


Asunto(s)
Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Animales , Sitios de Unión , Toxinas Botulínicas/toxicidad , Cristalografía por Rayos X , Diafragma/fisiología , Ratones , Modelos Moleculares , Nervio Frénico/efectos de los fármacos , Unión Proteica , Estructura Terciaria de Proteína
14.
Nature ; 444(7122): 1092-5, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17167421

RESUMEN

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.


Asunto(s)
Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Sinaptotagmina II/química , Sinaptotagmina II/metabolismo , Animales , Sitios de Unión , Toxinas Botulínicas/genética , Toxinas Botulínicas Tipo A , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Especificidad por Sustrato , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/genética
15.
Biochem J ; 431(2): 207-16, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20704566

RESUMEN

The extraordinarily high toxicity of botulinum neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven BoNT (botulinum neurotoxin) serotypes A-G inhibit acetylcholine release leading to flaccid paralysis. Uptake of BoNT/A, B, E, F and G requires a dual interaction with gangliosides and the synaptic vesicle proteins synaptotagmin or SV2 (synaptic vesicle glycoprotein 2), whereas little is known about the cell entry mechanisms of the serotypes C and D, which display the lowest amino acid sequence identity compared with the other five serotypes. In the present study we demonstrate that the neurotoxicity of BoNT/D depends on the presence of gangliosides by employing phrenic nerve hemidiaphragm preparations derived from mice expressing the gangliosides GM3, GM2, GM1 and GD1a, or only GM3 [a description of our use of ganglioside nomenclature is given in Svennerholm (1994) Prog. Brain Res. 101, XI-XIV]. High-resolution crystal structures of the 50 kDa cell-binding domain of BoNT/D alone and in complex with sialic acid, as well as biological analyses of single-site BoNT/D mutants identified two carbohydrate-binding sites. One site is located at a position previously identified in BoNT/A, B, E, F and G, but is lacking the conserved SXWY motif. The other site, co-ordinating one molecule of sialic acid, resembles the second ganglioside-binding pocket (the sialic-acid-binding site) of TeNT (tetanus neurotoxin).


Asunto(s)
Toxinas Botulínicas/química , Toxinas Botulínicas/toxicidad , Carbohidratos/química , Gangliósidos/metabolismo , Neuronas/efectos de los fármacos , Animales , Sitios de Unión , Bioensayo , Toxinas Botulínicas/metabolismo , Secuencia de Carbohidratos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cristalografía por Rayos X , Gangliósidos/química , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ácido N-Acetilneuramínico/química , Neuronas/patología , Fragmentos de Péptidos/química , Nervio Frénico/efectos de los fármacos , Nervio Frénico/metabolismo , Nervio Frénico/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
16.
Biochem Biophys Rep ; 28: 101150, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34703905

RESUMEN

Using in vitro protein complex formation assay, ability of SNAP-25 isoforms to generate SDS-resistant ternary SNARE complexes with Syntaxin-1 and VAMP-2 was investigated. Major SNAP-25 family proteins were found to generate heat-resistant ternary complexes with varying efficiency. Compared to human SNAP-25, its non-neuronal counterparts SNAP-23 and SNAP-29 formed lower amounts of ternary complexes. Changing Pro182 in human SNAP-23 to Arg182 (SNAP-23 P182R) improved its ability to bind partners and form complexes. In silico analysis of C-terminal helical content in various SNAP-25 family members showed that except human SNAP-23, all others displayed secondary α-helical conformation. We also report that human SNAP-29 is resistant to the proteolytic action of botulinum neurotoxin A even when applied at large concentration.

17.
Toxins (Basel) ; 12(12)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352834

RESUMEN

Botulinum neurotoxin (BoNT) serotype A inhibits neurotransmitter release by cleaving SNAP-25 and represents an established pharmaceutical for treating medical conditions caused by hyperactivity of cholinergic nerves. Oversecretion from non-neuronal cells is often also the cause of diseases. Notably, excessive release of inflammatory messengers is thought to contribute to diseases such as chronic obstructive pulmonary disease, asthma, diabetes etc. The expansion of its application to these medical conditions is prevented because the major non-neuronal SNAP-25 isoform responsible for exocytosis, SNAP-23, is, in humans, virtually resistant to BoNT/A. Based on previous structural data and mutagenesis studies of SNAP-23 we optimized substrate binding pockets of the enzymatic domain for interaction with SNAP-23. Systematic mutagenesis and rational design yielded the mutations E148Y, K166F, S254A, and G305D, each of which individually increased the activity of LC/A against SNAP-23 between 3- to 23-fold. The assembled quadruple mutant showed approximately 2000-fold increased catalytic activity against human SNAP-23 in in vitro cleavage assays. A comparable increase in activity was recorded for the full-length BoNT/A quadruple mutant tested in cultivated primary neurons transduced with a fluorescently tagged-SNAP-23 encoding gene. Equipped with a suitable targeting domain this quadruple mutant promises to complete successfully tests in cells of the immune system.


Asunto(s)
Toxinas Botulínicas Tipo A/síntesis química , Toxinas Botulínicas Tipo A/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Qb-SNARE/síntesis química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/síntesis química , Proteínas Qc-SNARE/metabolismo , Secuencia de Aminoácidos , Animales , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estructura Secundaria de Proteína , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratas , Ratas Sprague-Dawley
18.
Toxicon X ; 5: 100019, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32140681

RESUMEN

Neurological diseases constitute a quarter of global disease burden and are expected to rise worldwide with the ageing of human populations. There is an increasing need to develop new molecular systems which can deliver drugs specifically into neurons, non-dividing cells meant to last a human lifetime. Neuronal drug delivery must rely on agents which can recognise neurons with high specificity and affinity. Here we used a recently introduced 'stapling' system to prepare macromolecules carrying duplicated binding domains from the clostridial family of neurotoxins. We engineered individual parts of clostridial neurotoxins separately and combined them using a strong alpha-helical bundle. We show that combining two identical binding domains of tetanus and botulinum type D neurotoxins, in a sterically defined way by protein stapling, allows enhanced intracellular delivery of molecules into neurons. We also engineered a botulinum neurotoxin type C variant with a duplicated binding domain which increased enzymatic delivery compared to the native type C toxin. We conclude that duplication of the binding parts of tetanus or botulinum neurotoxins will allow production of high avidity agents which could deliver imaging reagents and large therapeutic enzymes into neurons with superior efficiency.

19.
J Neurochem ; 109(6): 1584-95, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19457120

RESUMEN

Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.


Asunto(s)
Endocitosis/efectos de los fármacos , Neuronas/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Toxina Tetánica/farmacología , Animales , Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/farmacología , Endocitosis/fisiología , Gangliósidos/metabolismo , Humanos , Modelos Biológicos , Neurotransmisores/metabolismo , Unión Proteica/efectos de los fármacos , Toxina Tetánica/química , Toxina Tetánica/metabolismo
20.
J Neurochem ; 110(6): 1942-54, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19650874

RESUMEN

The high toxicity of clostridial neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven botulinum neurotoxin serotypes A-G (BoNT/A-G) inhibit acetylcholine release, leading to flaccid paralysis, while tetanus neurotoxin blocks neurotransmitter release in inhibitory neurons, resulting in spastic paralysis. Uptake of BoNT/A, B, E and G requires a dual interaction with gangliosides and the synaptic vesicle (SV) proteins synaptotagmin or SV2, whereas little is known about the entry mechanisms of the remaining serotypes. Here, we demonstrate that BoNT/F as wells depends on the presence of gangliosides, by employing phrenic nerve hemidiaphragm preparations derived from mice expressing GM3, GM2, GM1 and GD1a or only GM3. Subsequent site-directed mutagenesis based on homology models identified the ganglioside binding site at a conserved location in BoNT/E and F. Using the mice phrenic nerve hemidiaphragm assay as a physiological model system, cross-competition of full-length neurotoxin binding by recombinant binding fragments, plus accelerated neurotoxin uptake upon increased electrical stimulation, indicate that BoNT/F employs SV2 as protein receptor, whereas BoNT/C and D utilise different SV receptor structures. The co-precipitation of SV2A, B and C from Triton-solubilised SVs by BoNT/F underlines this conclusion.


Asunto(s)
Toxinas Botulínicas/metabolismo , Gangliósidos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Unión Competitiva/efectos de los fármacos , Unión Competitiva/genética , Toxinas Botulínicas/farmacología , Diafragma/efectos de los fármacos , Diafragma/fisiología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Gangliósidos/química , Gangliósidos/deficiencia , Contracción Isométrica/efectos de los fármacos , Contracción Isométrica/fisiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Proteínas del Tejido Nervioso/genética , Nervio Frénico/fisiología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Isoformas de Proteínas/genética , Ratas , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA