Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 46(17): 5038-49, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17407325

RESUMEN

The X-ray crystal structures of human purine nucleoside phosphorylase (PNP) with bound inosine or transition-state analogues show His257 within hydrogen bonding distance of the 5'-hydroxyl. The mutants His257Phe, His257Gly, and His257Asp exhibited greatly decreased affinity for Immucillin-H (ImmH), binding this mimic of an early transition state as much as 370-fold (Km/Ki) less tightly than native PNP. In contrast, these mutants bound DADMe-ImmH, a mimic of a late transition state, nearly as well as the native enzyme. These results indicate that His257 serves an important role in the early stages of transition-state formation. Whereas mutation of His257 resulted in little variation in the PNP x DADMe-ImmH x SO4 structures, His257Phe x ImmH x PO4 showed distortion at the 5'-hydroxyl, indicating the importance of H-bonding in positioning this group during progression to the transition state. Binding isotope effect (BIE) and kinetic isotope effect (KIE) studies of the remote 5'-(3)H for the arsenolysis of inosine with native PNP revealed a BIE of 1.5% and an unexpectedly large intrinsic KIE of 4.6%. This result is interpreted as a moderate electronic distortion toward the transition state in the Michaelis complex with continued development of a similar distortion at the transition state. The mutants His257Phe, His257Gly, and His257Asp altered the 5'-(3)H intrinsic KIE to -3, -14, and 7%, respectively, while the BIEs contributed 2, 2, and -2%, respectively. These surprising results establish that forces in the Michaelis complex, reported by the BIEs, can be reversed or enhanced at the transition state.


Asunto(s)
Purina-Nucleósido Fosforilasa/metabolismo , Secuencia de Bases , Catálisis , Cristalografía por Rayos X , Cartilla de ADN , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Conformación Proteica , Purina-Nucleósido Fosforilasa/química , Purina-Nucleósido Fosforilasa/genética
2.
J Biol Chem ; 280(10): 9547-54, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15576366

RESUMEN

Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of polyamine synthesis are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not been described previously. 5'-Methylthio-immucillin-H, a transition state analogue inhibitor that is selective for malarial relative to human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may also have application as anti-malarials.


Asunto(s)
Adenina/metabolismo , Adenosina Desaminasa/metabolismo , Plasmodium falciparum/fisiología , Purinas/metabolismo , Adenosina Desaminasa/química , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Escherichia coli/enzimología , Humanos , Hipoxantina/metabolismo , Inosina/metabolismo , Metiltioinosina/metabolismo , Datos de Secuencia Molecular , Purina-Nucleósido Fosforilasa/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
J Am Chem Soc ; 126(22): 6882-3, 2004 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-15174854

RESUMEN

The remote 5'-3H V/K kinetic isotope effect (KIE) observed in human thymidine phosphorylase (6.1%) is significantly larger than can be explained by the reaction chemistry. One hypothesis connects the 5'-3H KIE in purine nucleoside phosphorylase to that enzyme's SN1 transition state. The transition state of thymidine phosphorylase, however, is an SN2 nucleophilic displacement. Here we report equilibrium binding isotope effects sufficiently large to explain the presence of this substantial KIE in thymidine phosphorylase.


Asunto(s)
Timidina Fosforilasa/metabolismo , Timidina/química , Unión Competitiva , Catálisis , Humanos , Isótopos , Cinética , Estructura Molecular , Unión Proteica , Tritio/química
4.
J Am Chem Soc ; 126(8): 2447-53, 2004 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-14982453

RESUMEN

Recombinant human thymidine phosphorylase catalyzes the reaction of arsenate with thymidine to form thymine and 2-deoxyribose 1-arsenate, which rapidly decomposes to 2-deoxyribose and inorganic arsenate. The transition-state structure of this reaction was determined using kinetic isotope effect analysis followed by computer modeling. Experimental kinetic isotope effects were determined at physiological pH and 37 degrees C. The extent of forward commitment to catalysis was determined by pulse-chase experiments to be 0.70%. The intrinsic kinetic isotope effects for [1'-(3)H]-, [2'R-(3)H]-, [2'S-(3)H]-, [4'-(3)H]-, [5'-(3)H]-, [1'-(14)C]-, and [1-(15)N]-thymidines were determined to be 0.989 +/- 0.002, 0.974 +/- 0.002, 1.036 +/- 0.002, 1.020 +/- 0.003, 1.061 +/- 0.003, 1.139 +/- 0.005, and 1.022 +/- 0.005, respectively. A computer-generated model, based on density functional electronic structure calculations, was fit to the experimental isotope effect. The structure of the transition state confirms that human thymidine phosphorylase proceeds through an S(N)2-like transition state with bond orders of 0.50 to the thymine leaving group and 0.33 to the attacking oxygen nucleophile. The reaction differs from the dissociative transition states previously reported for N-ribosyl transferases and is the first demonstration of a nucleophilic transition state for an N-ribosyl transferase. The large primary (14)C isotope effect of 1.139 can occur only in nucleophilic displacements and is the largest (14)C primary isotope effect reported for an enzymatic reaction. A transition state structure with substantial bond order to the attacking nucleophile and leaving group is confirmed by the slightly inverse 1'-(3)H isotope effect, demonstrating that the transition state is compressed by the impinging steric bulk of the nucleophile and leaving group.


Asunto(s)
Timidina Fosforilasa/química , Catálisis , Simulación por Computador , Inhibidores Enzimáticos/química , Humanos , Cinética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Electricidad Estática , Timidina/análogos & derivados , Timidina/metabolismo , Timidina Fosforilasa/antagonistas & inhibidores , Timidina Fosforilasa/metabolismo , Tritio
5.
Drug Des Discov ; 18(2-3): 91-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14675946

RESUMEN

3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) is the phosphorylated precursor of KDO, an essential sugar of the lipopolysaccharide of Gram negative bacteria. KDO8P is produced by a specific synthase (KDO8PS) by condensing arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP), with release of inorganic phosphate. As KDO8PS is present in bacteria and plants, but not in mammalian cells, and mutations that inactivate KDO8PS also block cell replication, KDO8PS is a promising target for the design of new antimicrobials that act by blocking lipopolysaccharide biosynthesis. Previous studies have shown that a compound mimicking an intermediate of the condensation reaction is a good ligand and a powerful inhibitor. Here we report on the crystallographic investigation of the binding to KDO8PS of new derivatives of this original inhibitor. The structures of the enzyme in complex with these compounds, and also with the PEP analogs, 2-phosphoglyceric acid (2-PGA) and Z-methyl-PEP, point to future strategies for the design of novel inhibitors of KDO8PS.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Aldehído-Liasas/química , Sitios de Unión , Cristalografía por Rayos X , Ácidos Glicéricos/química , Bacterias Gramnegativas/química , Modelos Moleculares , Fosfoenolpiruvato/análogos & derivados , Fosfoenolpiruvato/química , Unión Proteica , Estereoisomerismo , Relación Estructura-Actividad , Azúcares Ácidos/química
6.
J Biol Chem ; 277(27): 24103-13, 2002 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-11956197

RESUMEN

We have identified and defined the function of kpsF of Neisseria meningitidis and the homologues of kpsF in encapsulated K1 and K5 Escherichia coli. KpsF was shown to be the arabinose-5-phosphate isomerase, an enzyme not previously identified in prokaryotes, that mediates the interconversion of ribulose 5-phosphate and arabinose 5-phosphate. KpsF is required for 3-deoxy-d-manno-octulosonic acid (Kdo) biosynthesis in N. meningitidis. Mutation of kpsF or the gene encoding the CMP-Kdo synthetase (kpsU/kdsB) in N. meningitidis resulted in expression of a lipooligosaccharide (LOS) structure that contained only lipid A and reduced capsule expression in the five invasive disease-associated meningococcal serogroups (A, B, C, Y, and W-135). The step linking meningococcal capsule and LOS biosynthesis was shown to be Kdo production as the expression of capsule was wild type in a Kdo transferase (kdtA) mutant. Thus, in addition to lipooligosaccharide assembly, Kdo is required for meningococcal capsular polysaccharide expression. Furthermore, N. meningitidis, unlike enteric Gram-negative bacteria, can survive and synthesize only unglycosylated lipid A.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Lipopolisacáridos/biosíntesis , Neisseria meningitidis/genética , Polisacáridos Bacterianos/biosíntesis , Azúcares Ácidos/metabolismo , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Escherichia coli/metabolismo , Lipopolisacáridos/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neisseria meningitidis/enzimología , Plásmidos , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA