Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 103(6): 1093-1104, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36921719

RESUMEN

Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.


Asunto(s)
Lesión Renal Aguda , Factor de Transcripción SOX9 , Animales , Humanos , Ratones , Lesión Renal Aguda/prevención & control , Células Epiteliales/metabolismo , Riñón/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Regulación hacia Arriba , Dedos de Zinc
2.
Kidney Int ; 100(6): 1214-1226, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34534550

RESUMEN

A multitude of disease and therapy related factors drive the frequent development of kidney disorders in cancer patients. Along with chemotherapy, the newer targeted therapeutics can also cause kidney dysfunction through on and off-target mechanisms. Interestingly, among the small molecule inhibitors approved for the treatment of cancers that harbor BRAF-kinase activating mutations, vemurafenib can trigger tubular damage and acute kidney injury. BRAF is a proto-oncogene involved in cell growth. To investigate the underlying mechanisms, we developed cell culture and mouse models of vemurafenib kidney toxicity. At clinically relevant concentrations vemurafenib induces cell-death in transformed and primary mouse and human kidney tubular epithelial cells. In mice, two weeks of daily vemurafenib treatment causes moderate acute kidney injury with histopathological characteristics of kidney tubular epithelial cells injury. Importantly, kidney tubular epithelial cell-specific BRAF gene deletion did not influence kidney function under normal conditions or alter the severity of vemurafenib-associated kidney impairment. Instead, we found that inhibition of ferrochelatase, an enzyme involved in heme biosynthesis contributes to vemurafenib kidney toxicity. Ferrochelatase overexpression protected kidney tubular epithelial cells and conversely ferrochelatase knockdown increased the sensitivity to vemurafenib-induced kidney toxicity. Thus, our studies suggest that vemurafenib-associated kidney tubular epithelial cell dysfunction and kidney toxicity is BRAF-independent and caused, in part, by off-target ferrochelatase inhibition.


Asunto(s)
Ferroquelatasa , Proteínas Proto-Oncogénicas B-raf , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Indoles/toxicidad , Riñón/metabolismo , Ratones , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Sulfonamidas/toxicidad , Vemurafenib
3.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065421

RESUMEN

Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Células Dendríticas/efectos de los fármacos , Isquemia/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Sirolimus/farmacología , Lesión Renal Aguda/metabolismo , Traslado Adoptivo/métodos , Animales , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Isquemia/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Mol Cancer Ther ; 22(8): 936-946, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294884

RESUMEN

Identifying novel, unique, and personalized molecular targets for patients with pancreatic ductal adenocarcinoma (PDAC) remains the greatest challenge in altering the biology of fatal tumors. Bromo- and extra-terminal domain (BET) proteins are activated in a noncanonical fashion by TGFß, a ubiquitous cytokine in the PDAC tumor microenvironment (TME). We hypothesized that BET inhibitors (BETi) represent a new class of drugs that attack PDAC tumors via a novel mechanism. Using a combination of patient and syngeneic murine models, we investigated the effects of the BETi drug BMS-986158 on cellular proliferation, organoid growth, cell-cycle progression, and mitochondrial metabolic disruption. These were investigated independently and in combination with standard cytotoxic chemotherapy (gemcitabine + paclitaxel [GemPTX]). BMS-986158 reduced cell viability and proliferation across multiple PDAC cell lines in a dose-dependent manner, even more so in combination with cytotoxic chemotherapy (P < 0.0001). We found that BMS-986158 reduced both human and murine PDAC organoid growth (P < 0.001), with associated perturbations in the cell cycle leading to cell-cycle arrest. BMS-986158 disrupts normal cancer-dependent mitochondrial function, leading to aberrant mitochondrial metabolism and stress via dysfunctional cellular respiration, proton leakage, and ATP production. We demonstrated mechanistic and functional data that BETi induces metabolic mitochondrial dysfunction, abrogating PDAC progression and proliferation, alone and in combination with systemic cytotoxic chemotherapies. This novel approach improves the therapeutic window in patients with PDAC and offers another treatment approach distinct from cytotoxic chemotherapy that targets cancer cell bioenergetics.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Gemcitabina , Línea Celular Tumoral , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Antineoplásicos/farmacología , Desoxicitidina/uso terapéutico , Proliferación Celular , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Mitocondrias , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA