Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 625(7996): 728-734, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200314

RESUMEN

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Asunto(s)
Bosques , Árboles , Clima Tropical , Biodiversidad , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , África , Asia Sudoriental
2.
Nat Commun ; 15(1): 5554, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987543

RESUMEN

Thermophilization is the directional change in species community composition towards greater relative abundances of species associated with warmer environments. This process is well-documented in temperate and Neotropical plant communities, but it is uncertain whether this phenomenon occurs elsewhere in the tropics. Here we extend the search for thermophilization to equatorial Africa, where lower tree diversity compared to other tropical forest regions and different biogeographic history could affect community responses to climate change. Using re-census data from 17 forest plots in three mountain regions of Africa, we find a consistent pattern of thermophilization in tree communities. Mean rates of thermophilization were +0.0086 °C·y-1 in the Kigezi Highlands (Uganda), +0.0032 °C·y-1 in the Virunga Mountains (Rwanda-Uganda-Democratic Republic of the Congo) and +0.0023 °C·y-1 in the Udzungwa Mountains (Tanzania). Distinct from other forests, both recruitment and mortality were important drivers of thermophilzation in the African plots. The forests studied currently act as a carbon sink, but the consequences of further thermophilization are unclear.


Asunto(s)
Cambio Climático , Bosques , Árboles , Clima Tropical , Biodiversidad , Temperatura , Uganda , Tanzanía , Rwanda , República Democrática del Congo , Secuestro de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA