Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 50(8): 4616-4629, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420131

RESUMEN

Prokaryotic Argonautes (pAgos) use small nucleic acids as specificity guides to cleave single-stranded DNA at complementary sequences. DNA targeting function of pAgos creates attractive opportunities for DNA manipulations that require programmable DNA cleavage. Currently, the use of mesophilic pAgos as programmable endonucleases is hampered by their limited action on double-stranded DNA (dsDNA). We demonstrate here that efficient cleavage of linear dsDNA by mesophilic Argonaute CbAgo from Clostridium butyricum can be activated in vitro via the DNA strand unwinding activity of nuclease deficient mutant of RecBC DNA helicase from Escherichia coli (referred to as RecBexo-C). Properties of CbAgo and characteristics of simultaneous cleavage of DNA strands in concurrence with DNA strand unwinding by RecBexo-C were thoroughly explored using 0.03-25 kb dsDNAs. When combined with RecBexo-C, CbAgo could cleave targets located 11-12.5 kb from the ends of linear dsDNA at 37°C. Our study demonstrates that CbAgo with RecBexo-C can be programmed to generate DNA fragments with custom-designed single-stranded overhangs suitable for ligation with compatible DNA fragments. The combination of CbAgo and RecBexo-C represents the most efficient mesophilic DNA-guided DNA-cleaving programmable endonuclease for in vitro use in diagnostic and synthetic biology methods that require sequence-specific nicking/cleavage of linear dsDNA at any desired location.


Asunto(s)
Proteínas Argonautas , Proteínas Bacterianas , Clostridium butyricum , Técnicas Genéticas , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , División del ADN , Endonucleasas/genética , Proteínas de Escherichia coli , Exodesoxirribonucleasa V
2.
Proc Natl Acad Sci U S A ; 112(14): 4316-21, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831492

RESUMEN

Modified DNA bases in mammalian genomes, such as 5-methylcytosine ((5m)C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of (5m)C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like (5m)C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both (5m)C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine ((5f)U) and 5-carboxyuridine ((5ca)U) in vitro. Mutagenesis studies reveal a delicate balance between choice of (5m)C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to (5m)CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in (5m)C sequencing technologies such as single molecule, real-time sequencing to map (5m)C in bacterial genomes at base resolution.


Asunto(s)
5-Metilcitosina/química , Naegleria/enzimología , Oxigenasas/química , Proteínas Protozoarias/química , Algoritmos , Animales , Citosina/química , ADN/química , Proteínas de Unión al ADN/química , Epigénesis Genética , Epigenómica , Humanos , Ratones , Oxigenasas de Función Mixta/química , Mutación , Oxígeno/química , Filogenia , Proteínas Proto-Oncogénicas/química , Análisis de Secuencia de ADN , Timidina/química
3.
Chembiochem ; 14(16): 2144-52, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24106095

RESUMEN

5-(hydroxymethyl)cytosine (5-hmC) is a newly identified oxidative product of 5-methylcytosine (5-mC) in the mammalian genome, and is believed to be an important epigenetic marker influencing a variety of biological processes. In addition to its relatively low abundance, the fluctuation of 5-hmC levels over time during cell development poses a formidable challenge for its accurate mapping and quantification. Here we describe a specific chemoenzymatic approach to 5-hmC detection in DNA samples by using new uridine 5'-diphosphoglucosamine (UDP-GlcN) probes. Our approach requires modification of the glucose moiety of UDP-Glc with small amino groups and transfer of these glucose derivatives to the hydroxy moiety of 5-hmC by using T4 phage glucosyltransferases. We evaluated the transfer efficiencies of three glucosyltransferases (wild-type α- and ß-GTs and a Y261L mutant ß-GT) with five different UDP-Glc derivatives containing functionalized groups for subsequent bioconjugation and detection. Our results indicate that UDP-6-N3 -Glc, UDP-6-GlcN, and UDP-2-GlcN can be transferred by ß-GT with efficiencies similar to that seen with the native UDP-Glc cofactor. 6-N3 -Glc- and 6-GlcN-containing oligonucleotides were selectively labeled with reactive fluorescent probes. In addition, a 2 kb DNA fragment modified with 2-GlcN groups was specifically detected by use of a commercially available antiglucosamine antibody. Alternative substrates for ß-GT and correlated glycosyltransferases might prove useful for the study of the function and dynamics of 5-hmC and other modified nucleotides, as well as for multiplex analysis.


Asunto(s)
Citosina/análogos & derivados , Glucosamina/química , Coloración y Etiquetado , Nucleótidos de Uracilo/química , 5-Metilcitosina/análogos & derivados , Animales , Anticuerpos/inmunología , Bacteriófago T4/enzimología , Citosina/química , ADN/química , ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Colorantes Fluorescentes/química , Glucosamina/inmunología , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosilación , Ratones , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Especificidad por Sustrato
4.
PLoS Biol ; 8(12): e1000554, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21151881

RESUMEN

SgrAI is a type IIF restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-modulation of cleavage activity and sequence specificity. Previous studies have shown that DNA bound dimers of SgrAI oligomerize into an activated form with higher DNA cleavage rates, although previously determined crystal structures of SgrAI bound to DNA show only the DNA bound dimer. A new crystal structure of the type II restriction endonuclease SgrAI bound to DNA and Ca(2+) is now presented, which shows the close association of two DNA bound SgrAI dimers. This tetrameric form is unlike those of the homologous enzymes Cfr10I and NgoMIV and is formed by the swapping of the amino-terminal 24 amino acid residues. Two mutations predicted to destabilize the swapped form of SgrAI, P27W and P27G, have been made and shown to eliminate both the oligomerization of the DNA bound SgrAI dimers as well as the allosteric stimulation of DNA cleavage by SgrAI. A mechanism involving domain swapping is proposed to explain the unusual allosteric properties of SgrAI via association of the domain swapped tetramer of SgrAI bound to DNA into higher order oligomers.


Asunto(s)
Calcio/química , ADN/química , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , Streptomyces griseus/enzimología , Regulación Alostérica , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Dimerización , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína
5.
Biochemistry ; 51(5): 1009-19, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22229759

RESUMEN

5-Hydroxymethylcytosine (5-hmC) is an enzymatic oxidative product of 5-methylcytosine (5-mC). The Ten Eleven Translocation (TET) family of enzymes catalyze the conversion of 5-mC to 5-hmC. Phage-encoded glucosyltransferases are known to glucosylate 5-hmC, which can be utilized to detect and analyze the 5-hmC as an epigenetic mark in the mammalian epigenome. Here we have performed a detailed biochemical characterization and steady-state kinetic parameter analysis of T4 phage ß-glucosyltransferase (ß-GT). Recombinant ß-GT glucosylates 5-hmC DNA in a nonprocessive manner, and binding to either 5-hmC DNA or uridine diphosphoglucose (UDP-glucose) substrates is random, with both binary complexes being catalytically competent. Product inhibition studies with ß-GT demonstrated that UDP is a competitive inhibitor with respect to UDP-glucose and a mixed inhibitor with respect to 5-hmC DNA. Similarly, the glucosylated-5-hmC (5-ghmC) DNA is a competitive inhibitor with respect to 5-hmC DNA and mixed inhibitor with respect to UDP-glucose. 5-hmC DNA binds ~10 fold stronger to the ß-GT enzyme when compared to its glucosylated product. The numbers of 5-hmC on target sequences influenced the turnover numbers for recombinant ß-GT. Furthermore, we have utilized recombinant ß-GT to estimate global 5-hmC content in a variety of genomic DNAs. Most of the genomic DNAs derived from vertebrate tissue and cell lines contained 5-hmC. DNA from mouse, human, and bovine brains displayed 0.5-0.9% of the total nucleotides as 5-hmC, which was higher compared to the levels found in other tissues. A comparison between cancer and healthy tissue genomes suggested a lower percentage of 5-hmC in cancer, which may reflect the global hypomethylation of 5-mC observed during oncogenesis.


Asunto(s)
Citosina/análogos & derivados , Glucosiltransferasas/química , 5-Metilcitosina/análogos & derivados , Animales , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Bacteriófago T4/enzimología , Bovinos , Citosina/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Escherichia coli/enzimología , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Femenino , Genoma de Planta/genética , Genoma Viral/genética , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Células 3T3 NIH , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato/genética
6.
J Biol Chem ; 286(28): 24685-93, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21610077

RESUMEN

Cytosine residues in the vertebrate genome are enzymatically modified to 5-methylcytosine, which participates in transcriptional repression of genes during development and disease progression. 5-Methylcytosine can be further enzymatically modified to 5-hydroxymethylcytosine by the TET family of methylcytosine dioxygenases. Analysis of 5-methylcytosine and 5-hydroxymethylcytosine is confounded, as these modifications are indistinguishable by traditional sequencing methods even when supplemented by bisulfite conversion. Here we demonstrate a simple enzymatic approach that involves cloning, identification, and quantification of 5-hydroxymethylcytosine in various CCGG loci within murine and human genomes. 5-Hydroxymethylcytosine was prevalent in human and murine brain and heart genomic DNAs at several regions. The cultured cell lines NIH3T3 and HeLa both displayed very low or undetectable amounts of 5-hydroxymethylcytosine at the examined loci. Interestingly, 5-hydroxymethylcytosine levels in mouse embryonic stem cell DNA first increased then slowly decreased upon differentiation to embryoid bodies, whereas 5-methylcytosine levels increased gradually over time. Finally, using a quantitative PCR approach, we established that a portion of VANGL1 and EGFR gene body methylation in human tissue DNA samples is indeed hydroxymethylation.


Asunto(s)
Islas de CpG/fisiología , Citosina/análogos & derivados , Metilación de ADN/fisiología , Genoma Humano/fisiología , 5-Metilcitosina/análogos & derivados , Animales , Encéfalo/metabolismo , Citosina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HeLa , Humanos , Ratones , Miocardio/metabolismo , Células 3T3 NIH , Especificidad de Órganos
7.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 1): 67-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21206063

RESUMEN

SgrAI is a type II restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-activation with expansion of DNA-sequence specificity. The three-dimensional crystal structures of SgrAI bound to cleaved primary-site DNA and Mg²(+) and bound to secondary-site DNA with either Mg²(+) or Ca²(+) are presented. All three structures show a conformation of enzyme and DNA similar to the previously determined dimeric structure of SgrAI bound to uncleaved primary-site DNA and Ca²(+) [Dunten et al. (2008), Nucleic Acids Res. 36, 5405-5416], with the exception of the cleaved bond and a slight shifting of the DNA in the SgrAI/cleaved primary-site DNA/Mg²(+) structure. In addition, a new metal ion binding site is located in one of the two active sites in this structure, which is consistent with proposals for the existence of a metal-ion site near the 3'-O leaving group.


Asunto(s)
División del ADN , ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Streptomyces griseus/enzimología , Regulación Alostérica , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Activación Enzimática , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
8.
Biochemistry ; 49(41): 8818-30, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20836535

RESUMEN

SgrAI is a type II restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-modulation of DNA activity and sequence specificity. Precleaved primary site DNA has been shown to be an allosteric effector [Hingorani-Varma, K., and Bitinaite, J. (2003) J. Biol. Chem. 278, 40392-40399], stimulating cleavage of both primary (CR|CCGGYG, where the vertical bar indicates a cut site, R denotes A or G, and Y denotes C or T) and secondary [CR|CCGGY(A/C/T) and CR|CCGGGG] site DNA sequences. The fact that DNA is the allosteric effector of this endonuclease suggests at least two DNA binding sites on the functional SgrAI molecule, yet crystal structures of SgrAI [Dunten, P. W., et al. (2008) Nucleic Acids Res. 36, 5405-5416] show only one DNA duplex bound to one dimer of SgrAI. We show that SgrAI forms species larger than dimers or tetramers [high-molecular weight species (HMWS)] in the presence of sufficient concentrations of SgrAI and its primary site DNA sequence that are dependent on the concentration of the DNA-bound SgrAI dimer. Analytical ultracentrifugation indicates that the HMWS is heterogeneous, has sedimentation coefficients of 15-20 s, and is composed of possibly 4-12 DNA-bound SgrAI dimers. SgrAI bound to secondary site DNA will not form HMWS itself but can bind to HMWS formed with primary site DNA and SgrAI. Uncleaved, as well as precleaved, primary site DNA is capable of stimulating HMWS formation. Stimulation of DNA cleavage by SgrAI, at primary as well as secondary sites, is also dependent on the concentration of primary site DNA (cleaved or uncleaved) bound SgrAI dimers. SgrAI bound to secondary site DNA does not have significant stimulatory activity. We propose that the oligomers of DNA-bound SgrAI (i.e., HMWS) are the activated, or activatable, forms of the enzyme.


Asunto(s)
ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Multimerización de Proteína , Regulación Alostérica/fisiología , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Cinética
9.
Nucleic Acids Res ; 36(16): 5405-16, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18701646

RESUMEN

The three-dimensional X-ray crystal structure of the 'rare cutting' type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca(2+) bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn(2+), with strong binding at the protein-DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI.


Asunto(s)
ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Regulación Alostérica , Emparejamiento Base , Sitios de Unión , Calcio/química , Cristalografía por Rayos X , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Manganeso/química , Modelos Moleculares , Unión Proteica
10.
Nucleic Acids Res ; 35(6): 1992-2002, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17341463

RESUMEN

Here we report a PCR-based DNA engineering technique for seamless assembly of recombinant molecules from multiple components. We create cloning vector and target molecules flanked with compatible single-stranded (ss) extensions. The vector contains a cassette with two inversely oriented nicking endonuclease sites separated by restriction endonuclease site(s). The spacer sequences between the nicking and restriction sites are tailored to create ss extensions of custom sequence. The vector is then linearized by digestion with nicking and restriction endonucleases. To generate target molecules, a single deoxyuridine (dU) residue is placed 6-10 nt away from the 5'-end of each PCR primer. 5' of dU the primer sequence is compatible either with an ss extension on the vector or with the ss extension of the next-in-line PCR product. After amplification, the dU is excised from the PCR products with the USER enzyme leaving PCR products flanked by 3' ss extensions. When mixed together, the linearized vector and PCR products directionally assemble into a recombinant molecule through complementary ss extensions. By varying the design of the PCR primers, the protocol is easily adapted to perform one or more simultaneous DNA manipulations such as directional cloning, site-specific mutagenesis, sequence insertion or deletion and sequence assembly.


Asunto(s)
Clonación Molecular/métodos , ADN Recombinante/química , Desoxiuridina/metabolismo , Ingeniería Genética/métodos , ADN Recombinante/metabolismo , ADN de Cadena Simple/química , Endonucleasas/metabolismo , Vectores Genéticos , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Uracil-ADN Glicosidasa/metabolismo
11.
Nucleic Acids Res ; 31(7): 1805-12, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12654995

RESUMEN

A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes.


Asunto(s)
Enzimas de Restricción del ADN/clasificación , Metiltransferasas/clasificación , Terminología como Asunto , Secuencia de Bases , Sitios de Unión , ADN/genética , ADN/metabolismo , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
12.
PLoS One ; 10(4): e0124783, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25880668

RESUMEN

SgrAI is a type II restriction endonuclease with an unusual mechanism of activation involving run-on oligomerization. The run-on oligomer is formed from complexes of SgrAI bound to DNA containing its 8 bp primary recognition sequence (uncleaved or cleaved), and also binds (and thereby activates for DNA cleavage) complexes of SgrAI bound to secondary site DNA sequences which contain a single base substitution in either the 1st/8th or the 2nd/7th position of the primary recognition sequence. This modulation of enzyme activity via run-on oligomerization is a newly appreciated phenomenon that has been shown for a small but increasing number of enzymes. One outstanding question regarding the mechanistic model for SgrAI is whether or not the activating primary site DNA must be cleaved by SgrAI prior to inducing activation. Herein we show that an uncleavable primary site DNA containing a 3'-S-phosphorothiolate is in fact able to induce activation. In addition, we now show that cleavage of secondary site DNA can be activated to nearly the same degree as primary, provided a sufficient number of flanking base pairs are present. We also show differences in activation and cleavage of the two types of secondary site, and that effects of selected single site substitutions in SgrAI, as well as measured collisional cross-sections from previous work, are consistent with the cryo-electron microscopy model for the run-on activated oligomer of SgrAI bound to DNA.


Asunto(s)
División del ADN , ADN/química , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Multimerización de Proteína , Regulación Alostérica , Sitios de Unión , Microscopía por Crioelectrón , ADN/genética , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Fosfatos/química , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
13.
Methods Mol Biol ; 978: 165-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23423896

RESUMEN

Gene synthesis is an invaluable technique in synthetic and molecular biology for synthesis of artificial genes, operons, and even genomes. In many cases the traditional methods for obtaining functional DNA sequences through cloning are not applicable due to the novelty of genetic material. Here, we describe the simple and economical DNA synthesis method based on USER™ technology. The method consists of (1) synthesis of building blocks up to 500 bp; (2) assembly of genes up to 3 kb; (3) error correction reassembly; and (4) assembly of operons up to 15 kb if needed.


Asunto(s)
Desoxiuridina/química , Oligonucleótidos/química , Oligonucleótidos/síntesis química
14.
Curr Protoc Mol Biol ; Chapter 3: Unit 3.21, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19343708

RESUMEN

This unit describes a simple and efficient DNA engineering method that combines nucleotide sequence alteration, multiple PCR fragment assembly, and directional cloning. PCR primers contain a single deoxyuracil residue (dU), and can be designed to accommodate nucleotide substitutions, insertions, and/or deletions. The primers are then used to amplify DNA in discrete fragments that incorporate a dU at each end. Excision of deoxyuracils results in PCR fragments flanked by unique, overlapping, single-stranded extensions that allow the seamless and directional assembly of customized DNA molecules into a linearized vector. In this way, multi-fragment assemblies, as well as various mutagenic changes, can all be accomplished in a single-format experiment. Two basic protocols on the methods of uracil excision-based engineering are presented, and special attention is given to primer design. The use of a commercially available cloning vector and the preparation of custom vectors are also presented.


Asunto(s)
Clonación Molecular/métodos , Cartilla de ADN/genética , Ingeniería Genética/métodos , Uracilo/metabolismo , Reparación del ADN , Mutagénesis
15.
J Mol Biol ; 383(1): 186-204, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18762194

RESUMEN

Five new structures of the Q138F HincII enzyme bound to a total of three different DNA sequences and three different metal ions (Ca(2+), Mg(2+), and Mn(2+)) are presented. While previous structures were produced from soaking Ca(2+) into preformed Q138F HincII/DNA crystals, the new structures are derived from cocrystallization with Ca(2+), Mg(2+), or Mn(2+). The Mn(2)(+)-bound structure provides the first view of a product complex of Q138F HincII with cleaved DNA. Binding studies and a crystal structure show how Ca(2+) allows trapping of a Q138F HincII complex with noncognate DNA in a catalytically incompetent conformation. Many Q138F HincII/DNA structures show asymmetry, despite the binding of a symmetric substrate by a symmetric enzyme. The various complexes are fit into a model describing the different conformations of the DNA-bound enzyme and show how DNA conformational energetics determine DNA-cleavage rates by the Q138F HincII enzyme.


Asunto(s)
ADN/química , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cationes Bivalentes/metabolismo , Cristalización , Cristalografía por Rayos X , ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Dimerización , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
16.
J Biol Chem ; 281(33): 23852-69, 2006 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16675462

RESUMEN

The functional and structural consequences of a mutation of the DNA intercalating residue of HincII, Q138F, are presented. Modeling has suggested that the DNA intercalation by Gln-138 results in DNA distortions potentially used by HincII in indirect readout of its cognate DNA, GTYRAC (Y = C or T, R = A or G) (Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47). Kinetic data presented here indicate that the mutation of glutamine 138 to phenylalanine (Q138F) results in a change in sequence specificity at the center two base pairs of the cognate recognition site. We show that the preference of HincII for cutting, but not binding, the three cognate sites differing in the center two base pairs has been altered by the mutation Q138F. Five new crystal structures are presented including Q138F HincII bound to GTTAAC and GTCGAC both with and without Ca2+ as well as the structure of wild type HincII bound to GTTAAC. The Q138F HincII/DNA structures show conformational changes in the protein, bound DNA, and at the protein-DNA interface, consistent with the formation of adaptive complexes. Analysis of these structures and the effect of Ca2+ binding on the protein-DNA interface illuminates the origin of the altered specificity by the mutation Q138F in the HincII enzyme.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Calcio/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Glutamina/genética , Haemophilus influenzae/química , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Hidrólisis , Sustancias Intercalantes/química , Sustancias Intercalantes/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Fenilalanina/genética , Unión Proteica , Especificidad por Sustrato/genética
17.
Proc Natl Acad Sci U S A ; 99(3): 1164-9, 2002 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-11818524

RESUMEN

The primary target of SgrAI restriction endonuclease is a multiple sequence of the form 5'-CPu/CCGGPyG. Previous work had indicated that SgrAI must bind two recognition sites simultaneously for catalysis [Bilcock, D. T., Daniels, L. E., Bath, A. J. & Halford, S. E. (1999) J. Biol. Chem. 274, 36379-36386]. In the present study, SgrAI is shown to cleave not only its canonical sequences, but also the sequences 5'-CPuCCGGPy(A,T,C) and 5'-CPuCCGGGG, both referred to as secondary sequences. On plasmid pSK7, SgrAI cleaves secondary sites 26-fold slower than the canonical site. However, the same plasmid, but without the canonical site, is cleaved 200-fold slower. We show that DNA termini generated by cleaving the canonical site for SgrAI assist in the cleavage of secondary sites. The SgrAI-termini in cis with respect to secondary site are markedly preferred over those in trans. The SgrAI-termini provided in a form of oligonucleotide duplex are also shown to stimulate canonical site cleavage. At a 40-fold molar excess of the SgrAI-termini over substrate, the SgrAI specificity is shown to improve by two orders of magnitude, because of concurrent 10-fold increase in the cleavage of canonical site and 50-fold decrease in the cleavage of secondary sites. The unconventional reaction pathway by which SgrAI utilizes the self-generated DNA termini to cleave its DNA targets has not been observed hitherto among type II restriction endonucleases. Based on our work and previous reports, a pathway of DNA binding and cleavage by the SgrAI restriction endonuclease is proposed.


Asunto(s)
ADN/biosíntesis , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Secuencia de Bases , ADN/química , Cinética , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/biosíntesis , Especificidad por Sustrato
18.
J Biol Chem ; 278(41): 40392-9, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-12851384

RESUMEN

SgrAI restriction endonuclease cooperatively interacts and cleaves two target sites that include both the canonical sites, CPuCCGGPyG, and the secondary sites, CPuCCGGPy(A/T/C). It has been observed that the cleaved canonical sites stimulate SgrAI cleavage at the secondary sites. Equilibrium binding studies show that SgrAI binds to its canonical sites with a high affinity (Ka = 4-8 x 10(10) M-1) and that it has a 15-fold lower affinity for the cleaved canonical sites and a 30-fold lower affinity for the secondary sites. Steady-state kinetics reveals substrate cooperativity for SgrAI cleavage on both canonical and secondary sites. The specificity of SgrAI for the secondary site CACCGGCT, as measured by kcat/K is about 500-fold lower than that for the canonical site CACCGGCG, but this difference is reduced to 10-fold in the presence of the cleaved canonical sites. The efficiency of canonical site cleavage also increases by 3-fold when the cleaved canonical sites are present in the reaction. Furthermore, the substrate cooperativity for SgrAI cleavage is abolished for both types of sites in the presence of cleaved canonical sites. These results indicate that target site cleavage occurs via a coordinated interaction of two SgrAI protein subunits, where the subunit bound to the cleaved site stimulates the cleavage of the uncut site bound by the other subunit. The free subunits of SgrAI have the flexibility to bind different target sites and, consequently, assemble into various catalytically active complexes, which differ in their catalytic efficiencies.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Unión Competitiva , ADN/genética , Técnicas In Vitro , Cinética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA