Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 83(11): 1936-1952.e7, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267908

RESUMEN

Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.


Asunto(s)
Proteínas de Escherichia coli , Pliegue de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación Proteica , Disulfuros/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Biophys J ; 122(16): 3238-3253, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37422697

RESUMEN

Many secreted proteins, including viral proteins, contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that the RBD can only refold reversibly if its native disulfides are present before folding. But in their absence, the RBD spontaneously misfolds into a nonnative, molten-globule-like state that is structurally incompatible with complete disulfide formation and that is highly prone to aggregation. Thus, the RBD native structure represents a metastable state on the protein's energy landscape with reduced disulfides, indicating that nonequilibrium mechanisms are needed to ensure native disulfides form before folding. Our atomistic simulations suggest that this may be achieved via co-translational folding during RBD secretion into the endoplasmic reticulum. Namely, at intermediate translation lengths, native disulfide pairs are predicted to come together with high probability, and thus, under suitable kinetic conditions, this process may lock the protein into its native state and circumvent highly aggregation-prone nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Disulfuros/química , Proteínas/química , Pliegue de Proteína
3.
Proc Natl Acad Sci U S A ; 117(3): 1485-1495, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31911473

RESUMEN

Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins' sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins' sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Simulación de Dinámica Molecular , Fosfotransferasas/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Biosíntesis de Proteínas , Proteína Metiltransferasas/química , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
4.
PLoS Comput Biol ; 16(11): e1008323, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33196646

RESUMEN

Atomistic simulations can provide valuable, experimentally-verifiable insights into protein folding mechanisms, but existing ab initio simulation methods are restricted to only the smallest proteins due to severe computational speed limits. The folding of larger proteins has been studied using native-centric potential functions, but such models omit the potentially crucial role of non-native interactions. Here, we present an algorithm, entitled DBFOLD, which can predict folding pathways for a wide range of proteins while accounting for the effects of non-native contacts. In addition, DBFOLD can predict the relative rates of different transitions within a protein's folding pathway. To accomplish this, rather than directly simulating folding, our method combines equilibrium Monte-Carlo simulations, which deploy enhanced sampling, with unfolding simulations at high temperatures. We show that under certain conditions, trajectories from these two types of simulations can be jointly analyzed to compute unknown folding rates from detailed balance. This requires inferring free energies from the equilibrium simulations, and extrapolating transition rates from the unfolding simulations to lower, physiologically-reasonable temperatures at which the native state is marginally stable. As a proof of principle, we show that our method can accurately predict folding pathways and Monte-Carlo rates for the well-characterized Streptococcal protein G. We then show that our method significantly reduces the amount of computation time required to compute the folding pathways of large, misfolding-prone proteins that lie beyond the reach of existing direct simulation. Our algorithm, which is available online, can generate detailed atomistic models of protein folding mechanisms while shedding light on the role of non-native intermediates which may crucially affect organismal fitness and are frequently implicated in disease.


Asunto(s)
Algoritmos , Pliegue de Proteína , Proteínas Bacterianas/química , Biología Computacional , Cinética , Simulación de Dinámica Molecular/estadística & datos numéricos , Método de Montecarlo , Conformación Proteica , Desplegamiento Proteico , Programas Informáticos , Temperatura , Termodinámica
5.
PLoS Comput Biol ; 13(3): e1005421, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28257444

RESUMEN

Self-organization in the cell relies on the rapid and specific binding of molecules to their cognate targets. Correct bindings must be stable enough to promote the desired function even in the crowded and fluctuating cellular environment. In systems with many nearly matched targets, rapid and stringent formation of stable products is challenging. Mechanisms that overcome this challenge have been previously proposed, including separating the process into multiple stages; however, how particular in vivo systems overcome the challenge remains unclear. Here we consider a kinetic system, inspired by homology dependent pairing between double stranded DNA in bacteria. By considering a simplified tractable model, we identify different homology testing stages that naturally occur in the system. In particular, we first model dsDNA molecules as short rigid rods containing periodically spaced binding sites. The interaction begins when the centers of two rods collide at a random angle. For most collision angles, the interaction energy is weak because only a few binding sites near the collision point contribute significantly to the binding energy. We show that most incorrect pairings are rapidly rejected at this stage. In rare cases, the two rods enter a second stage by rotating into parallel alignment. While rotation increases the stability of matched and nearly matched pairings, subsequent rotational fluctuations reduce kinetic trapping. Finally, in vivo chromosome are much longer than the persistence length of dsDNA, so we extended the model to include multiple parallel collisions between long dsDNA molecules, and find that those additional interactions can greatly accelerate the searching.


Asunto(s)
Emparejamiento Base/genética , ADN/química , ADN/genética , Modelos Químicos , Modelos Moleculares , Homología de Secuencia de Ácido Nucleico , Sitios de Unión , Simulación por Computador , Reproducibilidad de los Resultados
6.
ArXiv ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36776823

RESUMEN

Non-native conformations drive protein misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well-suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.

7.
bioRxiv ; 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36380756

RESUMEN

Many secreted proteins contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that, whereas RBD can refold reversibly when its disulfides are intact, their disruption causes misfolding into a nonnative molten-globule state that is highly prone to aggregation and disulfide scrambling. Thus, non-equilibrium mechanisms are needed to ensure disulfides form prior to folding in vivo. Our simulations suggest that co-translational folding may accomplish this, as native disulfide pairs are predicted to form with high probability at intermediate lengths, ultimately committing the RBD to its metastable native state and circumventing nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA