Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7972): 97-103, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532816

RESUMEN

Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.


Asunto(s)
Cambio Climático , Pinus , Temperatura , Árboles , Cambio Climático/historia , Cambio Climático/estadística & datos numéricos , Calentamiento Global/historia , Calentamiento Global/estadística & datos numéricos , Reproducibilidad de los Resultados , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Historia Medieval , Historia del Siglo XXI , Modelos Climáticos , Incertidumbre , Pinus/anatomía & histología , Pinus/crecimiento & desarrollo , Internacionalidad
2.
Glob Chang Biol ; 25(9): 3136-3150, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31166643

RESUMEN

Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate-driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901-2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large-scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.


Asunto(s)
Picea , Pinus , Cambio Climático , Bosques , Temperatura
3.
New Phytol ; 216(3): 728-740, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28636081

RESUMEN

Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support.


Asunto(s)
Pared Celular , Tracheophyta/citología , Madera/citología , Tamaño de la Célula , Clima , Europa (Continente) , Células Vegetales , Temperatura , Madera/anatomía & histología
4.
Clim Dyn ; 55(3): 579-594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32713995

RESUMEN

High-resolution hydroclimate proxy records are essential for distinguishing natural hydroclimate variability from possible anthropogenically-forced changes, since instrumental precipitation observations are too short to represent the whole spectrum of natural variability. In Northern Europe, progress in this field has been hampered by a relative lack of long and truly moisture-sensitive proxy records. In this study, we provide the first assessment of the dendroclimatic potential of Blue Intensity (BI) and partial ring-width measurements (latewood and earlywood width series) from a network of cold and drought-prone Pinus sylvestris L. sites in Sweden. Our results show that all tree-ring parameters and sites share a clear and strong sensitivity to warm-season precipitation. The ΔBI parameter, in particular, shows considerable potential for hydroclimate reconstructions, here permitting a cross-validated precipitation reconstruction capable of explaining 56% (1901-2010 period) of regional-scale warm-season high-frequency precipitation variance. Using ΔBI as an alternative to ring-width improves the predictive skill with nearly a 20 percentage points increase in explained variance, reduces signal instability over time as well as allows a broader seasonal window (May-July) to be reconstructed. Additionally, we found that earlywood BI also reflect a positive late winter through early summer temperature signal. These findings emphasize that tree-rings, and in particular wood density parameters such as from BI, are capable of providing fundamental information to advance our understanding of hydroclimate variability in regions with a cool and rather humid climate regime that traditionally has been overlooked in studies of past droughts. Increasing the spatio-temporal coverage of hydroclimate records in northern Europe, and taking full advantage of the opportunities offered by the wood densitometric properties should be considered a research priority.

5.
Tree Physiol ; 37(7): 976-983, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379577

RESUMEN

The analysis of xylem cell anatomical features in dated tree rings provides insights into xylem functional responses and past growth conditions at intra-annual resolution. So far, special focus has been given to the lumen of the water-conducting cells, whereas the equally relevant cell wall thickness (CWT) has been less investigated due to methodological limitations. Here we present a novel approach to measure tracheid CWT in high-resolution images of wood cross-sections that is implemented within the specialized image-analysis tool 'ROXAS'. Compared with the traditional manual line measurements along a selection of few radial files, this novel image-analysis tool can: (i) measure CWT of all tracheids in a tree-ring cross-section, thus increasing the number of individual tracheid measurements by a factor of ~10-20; (ii) measure the tangential and radial walls separately; and (iii) laterally integrate the measurements in a customizable way from only the thinnest central part of the cell walls up to the thickest part of the tracheids at the corners. Cell wall thickness measurements performed with our novel approach and the traditional manual approach showed comparable accuracy for several image resolutions, with an optimal accuracy-efficiency balance at 100× magnification. The configurable settings intended to underscore different cell wall properties indeed changed the absolute levels and intra- and inter-annual patterns of CWT. This versatility, together with the high data production capacity, allows to tailor the measurements of CWT to the specific goal of each study, which opens new research perspectives, e.g., for investigating structure-function relationships, tree stress responses and carbon allocation patterns, and for reconstructing climate based on intra- and inter-annual variability of anatomical wood density.


Asunto(s)
Pared Celular/ultraestructura , Madera/anatomía & histología , Xilema/anatomía & histología , Árboles/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA