Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Care ; 25(1): 83, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632280

RESUMEN

BACKGROUND: Prognostication of neurological outcome in patients who remain comatose after cardiac arrest resuscitation is complex. Clinical variables, as well as biomarkers of brain injury, cardiac injury, and systemic inflammation, all yield some prognostic value. We hypothesised that cumulative information obtained during the first three days of intensive care could produce a reliable model for predicting neurological outcome following out-of-hospital cardiac arrest (OHCA) using artificial neural network (ANN) with and without biomarkers. METHODS: We performed a post hoc analysis of 932 patients from the Target Temperature Management trial. We focused on comatose patients at 24, 48, and 72 h post-cardiac arrest and excluded patients who were awake or deceased at these time points. 80% of the patients were allocated for model development (training set) and 20% for internal validation (test set). To investigate the prognostic potential of different levels of biomarkers (clinically available and research-grade), patients' background information, and intensive care observation and treatment, we created three models for each time point: (1) clinical variables, (2) adding clinically accessible biomarkers, e.g., neuron-specific enolase (NSE) and (3) adding research-grade biomarkers, e.g., neurofilament light (NFL). Patient outcome was the dichotomised Cerebral Performance Category (CPC) at six months; a good outcome was defined as CPC 1-2 whilst a poor outcome was defined as CPC 3-5. The area under the receiver operating characteristic curve (AUROC) was calculated for all test sets. RESULTS: AUROC remained below 90% when using only clinical variables throughout the first three days in the ICU. Adding clinically accessible biomarkers such as NSE, AUROC increased from 82 to 94% (p < 0.01). The prognostic accuracy remained excellent from day 1 to day 3 with an AUROC at approximately 95% when adding research-grade biomarkers. The models which included NSE after 72 h and NFL on any of the three days had a low risk of false-positive predictions while retaining a low number of false-negative predictions. CONCLUSIONS: In this exploratory study, ANNs provided good to excellent prognostic accuracy in predicting neurological outcome in comatose patients post OHCA. The models which included NSE after 72 h and NFL on all days showed promising prognostic performance.


Asunto(s)
Redes Neurales de la Computación , Paro Cardíaco Extrahospitalario/mortalidad , Medición de Riesgo/métodos , Adulto , Anciano , Área Bajo la Curva , Biomarcadores/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paro Cardíaco Extrahospitalario/complicaciones , Paro Cardíaco Extrahospitalario/epidemiología , Pronóstico , Estudios Prospectivos , Curva ROC , Estudios Retrospectivos , Medición de Riesgo/normas , Medición de Riesgo/estadística & datos numéricos
2.
Crit Care ; 24(1): 474, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32731878

RESUMEN

BACKGROUND: Pre-hospital circumstances, cardiac arrest characteristics, comorbidities and clinical status on admission are strongly associated with outcome after out-of-hospital cardiac arrest (OHCA). Early prediction of outcome may inform prognosis, tailor therapy and help in interpreting the intervention effect in heterogenous clinical trials. This study aimed to create a model for early prediction of outcome by artificial neural networks (ANN) and use this model to investigate intervention effects on classes of illness severity in cardiac arrest patients treated with targeted temperature management (TTM). METHODS: Using the cohort of the TTM trial, we performed a post hoc analysis of 932 unconscious patients from 36 centres with OHCA of a presumed cardiac cause. The patient outcome was the functional outcome, including survival at 180 days follow-up using a dichotomised Cerebral Performance Category (CPC) scale with good functional outcome defined as CPC 1-2 and poor functional outcome defined as CPC 3-5. Outcome prediction and severity class assignment were performed using a supervised machine learning model based on ANN. RESULTS: The outcome was predicted with an area under the receiver operating characteristic curve (AUC) of 0.891 using 54 clinical variables available on admission to hospital, categorised as background, pre-hospital and admission data. Corresponding models using background, pre-hospital or admission variables separately had inferior prediction performance. When comparing the ANN model with a logistic regression-based model on the same cohort, the ANN model performed significantly better (p = 0.029). A simplified ANN model showed promising performance with an AUC above 0.852 when using three variables only: age, time to ROSC and first monitored rhythm. The ANN-stratified analyses showed similar intervention effect of TTM to 33 °C or 36 °C in predefined classes with different risk of a poor outcome. CONCLUSION: A supervised machine learning model using ANN predicted neurological recovery, including survival excellently, and outperformed a conventional model based on logistic regression. Among the data available at the time of hospitalisation, factors related to the pre-hospital setting carried most information. ANN may be used to stratify a heterogenous trial population in risk classes and help determine intervention effects across subgroups.


Asunto(s)
Cuidados Críticos , Hipotermia Inducida , Redes Neurales de la Computación , Paro Cardíaco Extrahospitalario/terapia , Anciano , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Medición de Riesgo
3.
Hypertens Pregnancy ; 43(1): 2312165, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38385188

RESUMEN

BACKGROUND: Predicting severe preeclampsia with need for intensive care is challenging. To better predict high-risk pregnancies to prevent adverse outcomes such as eclampsia is still an unmet need worldwide. In this study we aimed to develop a prediction model for severe outcomes using routine biomarkers and clinical characteristics. METHODS: We used machine learning models based on data from an intensive care cohort with severe preeclampsia (n=41) and a cohort of preeclampsia controls (n=40) with the objective to find patterns for severe disease not detectable with traditional logistic regression models. RESULTS: The best model was generated by including the laboratory parameters aspartate aminotransferase (ASAT), uric acid and body mass index (BMI) with a cross-validation accuracy of 0.88 and an area under the curve (AUC) of 0.91. Our model was internally validated on a test-set where the accuracy was lower, 0.82, with an AUC of 0.85. CONCLUSION: The clinical routine blood parameters ASAT and uric acid as well as BMI, were the parameters most indicative of severe disease. Aspartate aminotransferase reflects liver involvement, uric acid might be involved in several steps of the pathophysiologic process of preeclampsia, and obesity is a well-known risk factor for development of both severe and non-severe preeclampsia likely involving inflammatory pathways..[Figure: see text].


Asunto(s)
Preeclampsia , Embarazo , Humanos , Femenino , Proyectos Piloto , Ácido Úrico , Aprendizaje Automático , Aspartato Aminotransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA