Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chemistry ; 29(36): e202300680, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-36988018

RESUMEN

A synthetic approach to two regioisomeric π-electron extended [1,4]thiaborins annulated with two benzothiophene units has been developed. The central thiaborin rings of the boracycles obtained exhibit different electronic properties; this is reflected in their different aromatic characters, boron Lewis acidity and UV-vis spectroscopic behavior. Thiaborins were converted to boron dipyrromethene (BODIPY) complexes. Their emission spectra exhibit two distinct bands resulting from 1 LE and 1 CT transitions. Strong near-infrared phosphorescence in Zeonex thin films at 77 K indicates efficient intersystem crossing and the formation of triplet states. Separation of HOMO and LUMO orbitals between boracyclic and BODIPY moieties facilitates electron transfer to a 1 CT state followed by a transition to the 3 LE triplet state located on the ligand. These unique properties of spiro thiaborin-BODIPY complexes were explored for their application as singlet-oxygen photosensitizers. They show excellent photocatalytic performance with singlet oxygen quantum yields reaching 77 % and full conversion of the model organic substrate achieved after 1.5 h with only 0.05 % mol catalyst load.

2.
Chemistry ; 29(36): e202301561, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37235881

RESUMEN

Invited for the cover of this issue are Krzysztof Durka and co-workers at Warsaw University of Technology, University of Warsaw, Silesian University of Technology and Heinrich-Heine-Universität. The image depicts the generation of singlet oxygen by the BODIPY photosensitizer. Read the full text of the article at 10.1002/chem.202300680.

3.
Nanotechnology ; 34(5)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278289

RESUMEN

The aryl diazonium salt chemistry offers enhancement of near-infrared (NIR) emission of single-walled carbon nanotubes (SWCNTs), although, the attachment of functional molecules which could bring hybrid properties through the process is underdeveloped. In this work, we utilize aryl diazonium salt of fluorescein to createsp3defects on (6,5) SWCNTs. We study the influence of pH on the grafting process identifying that pH 5-6 is necessary for a successful reaction. The fluorescein-modified (6,5) SWCNTs (F-(6,5) SWCNTs) exhibit red-shiftedE11* emission in the NIR region attributed to luminescentsp3defects, but also visible (Vis) fluorescence at 515 nm from surface-attached fluorescein molecules. The fluorescence in both Vis and NIR regions of F-(6,5) SWCNTs exhibit strong pH-dependency associated with the dissociation of fluorescein molecules with an indication of photoinduced-electron transfer quenching the Vis emission of fluorescein dianion. The F-(6,5) SWCNTs could potentially be used for dual-channel medical imaging as indicated by our preliminary experiments. We hope that our research will encourage new, bold modifications of SWCNTs with functional molecules introducing new, unique hybrid properties.

4.
Phys Chem Chem Phys ; 24(19): 11828-11835, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35508202

RESUMEN

Within the presented work, we propose a complex photoemission-based approach for the investigation of the C60ThSe2 dyad (C60ThSe2)/indium-tin oxide (ITO) interface formation. For surface topography and basic morphology determination, atomic force microscopy was utilized, and the results showed that C60ThSe2 agglomerated into close-to-spherical crystallites and the island-like growth was the dominant type for fullerene growth on the ITO substrate. Further, detailed X-ray and UV-photoelectron spectroscopies (XPS, UPS) were used for thorough characterization of the chemical and electronic properties of the investigated structures. Experiments were conducted by means of cyclic voltammetry and UV-VIS techniques for both deposition purposes and for determination of the basic electronic structure. As a result, we present the detailed characterization of the chemical and energy structures with a clear designation of the mutual influence of both materials on their counterparts. Among others, the accurate photoemission signal decomposition of the overlapping signals was done with respect to obtaining the energy-related information depth. The obtained data clearly showed that an interface dipole (0.56 eV) was created between the ITO substrate and organic overlayer at the ultrathin coverage stage. Since our results point out the most probable charge-carrier relocation in the vicinity of the interface, this together with the dipole existence should be taken into account while creating energy-level cascades for various (e.g., photovoltaic or organic electronic) applications. The work may also provide insights for engineers working with a vast range of organic-based electronics while designing devices based on fullerene/ITO hybrid structures.

5.
Mikrochim Acta ; 189(8): 269, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35788785

RESUMEN

The synthesis and characterization of a novel titania/silica hybrid xerogel subsequently modified with 4-methylpyridine (4-Pic), named TiSi4Pic+Cl- is reported. The physicochemical, structural and thermal properties of TiSi4Pic+Cl- were characterized using several techniques. Anchoring cobalt(II) phthalocyanine (CoTsPc) in TiSi4Pic+Cl- showed greater electroanalytical sensitivity over other sensors built with these materials. A novel electroanalytical method was developed to quantify the noxious biocide pentachlorophenol (PCP) for environmental monitoring. The peak current intensity increased linearly with the analyte concentration in the range between 0.99 and 4.21 µmol L-1, based on the oxidation process (at + 0.81 V, vs. Ag/AgCl) of differential pulse voltammetry (DPV). The estimated limit of detection (LOD) was 29 nmol L-1. Recovery tests in environmental samples showed a PCP concentration of 2.05 ± 0.03 µmol L-1 (n = 3). The method was statistically validated by comparing the PCP concentrations with those obtained by molecular absorption spectrometry and high-performance liquid chromatography-diode array detection (HPLC-DAD). At a 95% confidence level, no difference between the results was found, therefore confirming the excellent accuracy of the proposed method.


Asunto(s)
Pentaclorofenol , Cobalto/química , Electrodos , Indoles , Isoindoles , Dióxido de Silicio , Titanio
6.
J Org Chem ; 86(18): 12714-12722, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34469160

RESUMEN

Herein, we present a new strategy for the development of efficient heavy-atom free singlet oxygen photosensitizers based on rigid borafluorene scaffolds. Physicochemical properties of borafluorene complexes can be easily tuned through the choice of ligand, thus allowing exploration of numerous organoboron structures as potent 1O2 sensitizers. The singlet oxygen generation quantum yields of studied complexes vary in the range of 0.55-0.78. Theoretical calculations reveal that the introduction of the borafluorene moiety is crucial for the stabilization of a singlet charge transfer state, while intersystem crossing to a local triplet state is facilitated by orthogonal donor-acceptor molecular architecture. Our study shows that quantitative oxidation of selected organic substrates can be achieved in 20-120 min of irradiation with only 0.05 mol % loading of a photocatalyst.


Asunto(s)
Fármacos Fotosensibilizantes , Oxígeno Singlete , Ligandos , Estructura Molecular , Oxidación-Reducción
7.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638766

RESUMEN

Carbohydrate moieties were combined with various cross-linkable anions (thiocyanate [SCN], tetracyanoborate [TCB], tricyanomethanide [TCM], and dicyanamide [DCA]) and investigated as precursors for the synthesis of nitrogen-doped and nitrogen-/sulfur-co-doped carbons. The influence of the molecular structures of the precursors on their thermophysical properties and the properties of the derived carbon materials was elucidated and compared to petroleum-derived analogs. A carbohydrate-based ionic liquid featuring an [SCN] anion yielded more carbon residues upon carbonization than its 1-ethyl-3-methylimidazolium analog, and the resulting dual-doping of the derived carbon material translated to enhanced catalytic activity in the oxygen reduction reaction.


Asunto(s)
Carbono/química , Líquidos Iónicos/química , Aniones/química
8.
Sci Rep ; 14(1): 11106, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750130

RESUMEN

Transforming amines with low boiling points and high volatilities into protic salts is a versatile strategy to utilize low molecular weight compounds as precursors for N-doped carbon structures in a straightforward carbonization procedure. Herein, conventional mineral acids commonly used for the synthesis of protic salts were replaced by bio-derived phytic acid, which, combined with various amines and amino acids, yielded partially or fully bio-derived protic salts. The biomass-based salts showed higher char-forming ability than their mineral acid-based analogs (up to 55.9% at 800°), simultaneously providing carbon materials with significant porosity (up to 1177 m2g-1) and a considerable level of N,P,O-doping. Here, we present the first comprehensive study on the correlation between the structure of the bio-derived protic precursors and the properties of derived carbon materials to guide future designs of biomass-derived precursors for the one-step synthesis of sustainable carbon materials. Additionally, we demonstrate how to improve the textural properties of the protic-salt-derived carbons (which suffer from high brittleness) by simply upgrading them into highly flexible nanocomposites using high-quality single-walled carbon nanotubes. Consequently, self-standing electrodes for the oxygen reduction reaction were created.

9.
Materials (Basel) ; 16(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048899

RESUMEN

Fullerenes have been long investigated for application as singlet oxygen sources. Even though they possess high photosensitizing efficiency, their practical use is still limited, mostly because of insufficient absorption of visible and/or near-infrared light. This limitation can be overcome by introducing organic chromophores that absorb longer-wavelength light, either by covalent attachment to C60 or by its encapsulation in a polymeric matrix. In this work, we investigated the photosensitizing properties of the C60 molecule functionalized with organic units comprising thiophene or selenophene rings. The chemical structures of the synthesized dyads were characterized by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The influence of the S/Se atoms and vinyl linkage between the organic unit and C60 on the absorptive and emissive properties of the dyads was investigated and correlated with their photosensitizing activity. For the latter, we used a standard chemical singlet oxygen trap. A selected dyad C60ThSe2 was also applied as a source of singlet oxygen in a model photocatalyzed synthesis of the fine chemical juglone from 1,5-dihydroxynapthalene.

10.
ACS Appl Mater Interfaces ; 15(39): 45701-45712, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37737728

RESUMEN

Electrical stimulation has been used successfully for several decades for the treatment of neurodegenerative disorders, including motor disorders, pain, and psychiatric disorders. These technologies typically rely on the modulation of neural activity through the focused delivery of electrical pulses. Recent research, however, has shown that electrically triggered neuromodulation can be further enhanced when coupled with optical stimulation, an approach that can benefit from the development of novel electrode materials that combine transparency with excellent electrochemical and biological performance. In this study, we describe an electrochemically modified, nanostructured indium tin oxide/poly(ethylene terephthalate) (ITO/PET) surface as a flexible, transparent, and cytocompatible electrode material. Electrochemical oxidation and reduction of ITO/PET electrodes in the presence of an ionic liquid based on d-glucopyranoside and bistriflamide units were performed, and the electrochemical behavior, conductivity, capacitance, charge transport processes, surface morphology, optical properties, and cytocompatibility were assessed in vitro. It has been shown that under selected conditions, electrochemically modified ITO/PET films remained transparent and highly conductive and were able to enhance neural cell survival and neurite outgrowth. Consequently, electrochemical modification of ITO/PET electrodes in the presence of an ionic liquid is introduced as an effective approach for tailoring the properties of ITO for advanced bio-optoelectronic applications.


Asunto(s)
Líquidos Iónicos , Nanoestructuras , Humanos , Oxidación-Reducción , Compuestos de Estaño/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-36892008

RESUMEN

New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.

12.
Materials (Basel) ; 15(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35160921

RESUMEN

Light-activated antimicrobial coatings are currently considered to be a promising approach for the prevention of nosocomial infections. In this work, we present a straightforward strategy for the deposition of a photoactive biocidal organic layer of zinc (tetraamino)phthalocyanine (ZnPcNH2) in an electrochemical oxidative process. The chemical structure and morphology of the resulting layer are widely characterized by microscopic and spectroscopic techniques, while its ability to photogenerate reactive oxygen species (ROS) is investigated in situ by UV-Vis spectroscopy with α-terpinene or 1,3-diphenylisobenzofuran as a chemical trap. It is shown that the ZnPcNH2 photosensitizer retained its photoactivity after immobilization, and that the reported light-activated coating exhibits promising antimicrobial properties towards Staphyloccocus aureus (S. aureus).

13.
Materials (Basel) ; 14(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652904

RESUMEN

For many years, the research on conjugated polymers (CPs) has been mainly focused on their application in organic electronics. Recent works, however, show that due to the unique optical and photophysical properties of CPs, such as high absorption in UV-Vis or even near-infrared (NIR) region and efficient intra-/intermolecular energy transfer, which can be relatively easily optimized, CPs can be considered as an effective light-activated source of versatile and highly reactive singlet oxygen for medical or catalytic use. The aim of this short review is to present the novel possibilities that lie dormant in those exceptional polymers with the extended system of π-conjugated bonds.

14.
Materials (Basel) ; 14(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34200077

RESUMEN

Two highly efficient commercial organic photosensitizers-azure A (AA) and 5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin (APTPP)-were covalently attached to the glass surface to form a photoactive monolayer. The proposed straightforward strategy consists of three steps, i.e., the initial chemical grafting of 3-aminopropyltriethoxysilane (APTES) followed by two chemical postmodification steps. The chemical structure of the resulting mixed monolayer (MIX_TC_APTES@glass) was widely characterized by X-ray photoelectron (XPS) and Raman spectroscopies, while its photoactive properties were investigated in situ by UV-Vis spectroscopy with α-terpinene as a chemical trap. It was shown that both photosensitizers retain their activity toward light-activated generation of reactive oxygen species (ROS) after immobilization on the glassy surface and that the resulting nanolayer shows high stability. Thanks to the complementarity of the spectral properties of AA and APTPP, the effectiveness of the ROS photogeneration under broadband illumination can be optimized. The reported light-activated nanocoating demonstrated promising antimicrobial activity toward Escherichia coli (E. coli), by reducing the number of adhered bacteria compared to the unmodified glass surface.

15.
Materials (Basel) ; 14(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572836

RESUMEN

There are many methods for incorporating organic corrosion inhibitors to oxide coatings formed on aluminum alloys. However, typically they require relatively concentrated solutions of inhibitors, possibly generating a problematic waste and/or are time-/energy-consuming (elevated temperature is usually needed). The authors propose a three-step method of oxide layer formation on 6061-T651 aluminum alloy (AAs) via alternating current (AC) plasma electrolytic oxidation (PEO), impregnation with an 8-hydroxyquinoline (8-HQ) solution, and final sealing by an additional direct current (DC) polarization in the original PEO electrolyte. The obtained coatings were characterized by scanning electron microscopy, roughness tests, contact angle measurements, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Additionally, corrosion resistance was assessed by potentiodynamic polarization in a NaCl solution. Two types of the coating were formed (A-thicker, more porous at 440 mA cm-2; B-thinner, more compact at 220 mA cm-2) on the AA substrate. The 8-HQ impregnation was successful as evidenced by XPS. It increased the contact angle only for the B coatings and improved the corrosion resistance of both coating systems. Additional DC treatment destroyed superficially adsorbed 8-HQ. However, it served to block the coating pores (contact angle ≈ 80°) which improved the corrosion resistance of the coating systems. DC sealing alone did not bring about the same anti-corrosion properties as the combined 8-HQ impregnation and DC treatment which dispels the notion that the provision of the inhibitor was a needless step in the procedure. The proposed method of AA surface treatment suffered from unsatisfactory uniformity of the sealing for the thicker coatings, which needs to be amended in future efforts for optimization of the procedure.

16.
J Phys Chem C Nanomater Interfaces ; 125(24): 13542-13550, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34276868

RESUMEN

Phthalocyanines (Pc), with or without metal ligands, are still of high research interest, mainly for the application in organic electronics. Because of rather low solubility, Pc-based films are commonly deposited applying various advanced and demanding vacuum techniques, like physical vapor deposition (PVD). In this work, an alternative straightforward approach of NiPc layer formation is proposed in which NH2-side groups of nickel(II) tetraamino-phthalocyanine (AmNiPc) are engaged in the process of electrochemical deposition of (AmNiPc)layer on indium-tin oxide (ITO) substrates. The resulting layer is widely investigated by cyclic voltammetry, atomic force microscopy, UV-vis, and ATR-IR spectroscopies, X-ray diffraction, and photoemission techniques: X-ray and UV-photoelectron spectroscopies. The chemical and electronic structure of (AmNiPc)layer is characterized. It is shown that the electronic properties of the formed (AmNiPc)layer/ITO hybrid correspond to the ones previously reported for PVD-NiPc films.

17.
Materials (Basel) ; 13(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266319

RESUMEN

This paper reports on hybrid, bioactive ceramic Ca-P-based coating formation on a Ti-6Al-7Nb alloy substrate to enhance the osseointegration process. The Ti alloy was anodized in a Ca3(PO4)2 suspension and then the additional layer was formed by the sol-gel technique to obtain a mixture of the calcium phosphate compounds. The oxide layer was porous and additional ceramic particles were formed after sol-gel treatment (scanning electron microscopy analysis coupled with energy-dispersive x-ray spectroscopy). The ceramic particles were formed on some parts of the oxide layer and did not completely fill the pores. The layer thickness of the anodized Ti alloy was comprised between 3.01 and 5.03 µm and increased to 7.52-12.30 µm after the formation of an additional layer. Post-treatment of the anodized Ti alloys caused a decrease in surface roughness, and the layer became strongly hydrophilic. Crystalline phase analysis (X-ray diffraction, XRD) showed that the hybrid layer was composed of TiO2 (anatase), Ca3(PO4)2, Ca10(PO4)6(OH)2 and a partially amorphous phase; thus, the layer was also analyzed by Raman spectroscopy. The hybrid layer showed worse adhesion to the substrate than the anodized layer only; however, the coating was not brittle, and the first delamination of the layer was determined at 1.84 ± 0.11 N during scratch-test measurement. The hybrid coating was favorable for collagen type I and lactoferrin adsorption, strongly influencing the proliferation of osteoblast-like MG-63 cells. The coatings were cytocompatible and may find applications in formation of the functional layers on long-term implants' surface after.

18.
Bioact Mater ; 5(3): 709-720, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32478204

RESUMEN

This paper describes a formation of hybrid coatings on a Ti-2Ta-3Zr-36Nb surface. This is accomplished by plasma electrolytic oxidation and a dip-coating technique with poly(adipic anhydride) ((C6H8O3)n) that is loaded with drugs: amoxicillin (C16H19N3O5S), cefazolin (C14H14N8O4S3) or vancomycin (C66H75Cl2N9O24 · xHCl). The characteristic microstructure of the polymer was evaluated using scanning electron microscopy and confocal microscopy. Depending on the surface treatment, the surface roughness varied (between 1.53 µm and 2.06 µm), and the wettability was change with the over of time. X-ray photoelectron spectroscopy analysis showed that the oxide layer did not affect the polymer layer or loaded drugs. However, the drugs lose their stability in a phosphate-buffered saline solution after 6.5 h of exposure, and its decrease was greater than 7% (HPLC analysis). The stability, drug release and concentration of the drug loaded into the material were precisely analyzed by high-performance liquid chromatography. The results correlated with the degradation of the polymer in which the addition of drugs caused the percent of degraded polymer to be between 35.5% and 49.4% after 1 h of material immersion, depending on the mass of the loaded drug and various biological responses that were obtained. However, all of the coatings were cytocompatible with MG-63 osteoblast-like cells. The drug concentrations released from the coatings were sufficient to inhibit adhesion of reference and clinical bacterial strains (S. aureus). The coatings with amoxicillin showed the best results in the bacterial inhibition zone, whereas coatings with cefazolin inhibited adhesion of the above bacteria on the surface.

19.
J Vis Exp ; (140)2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30371655

RESUMEN

In the presented work, two spectroelectrochemical techniques are discussed as tools for the analysis of the structural changes occurring in the molecule on the vibrational level of energy. Raman and IR spectroelectrochemistry can be used for advanced characterization of the structural changes in the organic electroactive compounds. Here, the step-by-step analysis by means of Raman and IR spectroelectrochemistry is shown. Raman and IR spectroelectrochemical techniques provide complementary information about structural changes occurring during an electrochemical process, i.e. allows for the investigation of redox processes and their products. The examples of IR and Raman spectroelectrochemical analysis are presented, in which the products of the redox reactions, both in solution and solid state, are identified.


Asunto(s)
Microscopía Óptica no Lineal/métodos , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA