RESUMEN
The rate of the final step in the astrophysical αp process, the ^{34}Ar(α,p)^{37}K reaction, suffers from large uncertainties due to a lack of experimental data, despite having a considerable impact on the observable light curves of x-ray bursts and the composition of the ashes of hydrogen and helium burning on accreting neutron stars. We present the first direct measurement constraining the ^{34}Ar(α,p)^{37}K reaction cross section, using the Jet Experiments in Nuclear Structure and Astrophysics gas jet target. The combined cross section for the ^{34}Ar,Cl(α,p)^{37}K,Ar reaction is found to agree well with Hauser-Feshbach predictions. The ^{34}Ar(α,2p)^{36}Ar cross section, which can be exclusively attributed to the ^{34}Ar beam component, also agrees to within the typical uncertainties quoted for statistical models. This indicates the applicability of the statistical model for predicting astrophysical (α,p) reaction rates in this part of the αp process, in contrast to earlier findings from indirect reaction studies indicating orders-of-magnitude discrepancies. This removes a significant uncertainty in models of hydrogen and helium burning on accreting neutron stars.
Asunto(s)
Helio , Hidrógeno , Modelos Estadísticos , NeutronesRESUMEN
The cross sections of nuclear reactions between the radioisotope ^{7}Be and deuterium, a possible mechanism of reducing the production of mass-7 nuclides in big-bang nucleosynthesis, were measured at center-of-mass energies between 0.2 and 1.5 MeV. The measured cross sections are dominated by the (d,α) reaction channel, towards which prior experiments were mostly insensitive. A new resonance at 0.36(5) MeV with a strength of ωγ=1.7(5) keV was observed inside the relevant Gamow window. Calculations of nucleosynthesis outcomes based on the experimental cross section show that the resonance reduces the predicted abundance of primordial ^{7}Li, but not sufficiently to solve the primordial lithium problem.
RESUMEN
This corrects the article DOI: 10.1103/PhysRevLett.122.182701.
RESUMEN
Detection of nuclear-decay γ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense γ-ray flux is thought to be annihilation radiation from the ß^{+} decay of ^{18}F, which is destroyed prior to decay by the ^{18}F(p,α)^{15}O reaction. Estimates of ^{18}F production had been uncertain, however, because key near-threshold levels in the compound nucleus, ^{19}Ne, had yet to be identified. We report the first measurement of the ^{19}F(^{3}He,tγ)^{19}Ne reaction, in which the placement of two long-sought 3/2^{+} levels is suggested via triton-γ-γ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of 1.5-17 at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.
RESUMEN
The ^{19}Ne(p,γ)^{20}Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the ^{15}O(α,γ)^{19}Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in ^{20}Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction ^{19}Ne(d,n)^{20}Na is measured with a beam of the radioactive isotope ^{19}Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the ^{19}Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3^{+}, 1^{+}, and (0^{+}), respectively. In addition, we identify two resonances with the first excited state in ^{19}Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in ^{19}Ne(p,γ)^{20}Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.
RESUMEN
We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs ß decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three ß decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a ß-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state ß feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state ß feeding of 95.5(20)%. Our measurements substantially modify the ß-decay feedings of ^{142}Cs, reducing the ß feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from â¼10% to â¼12%.
RESUMEN
Atomic nuclei have a shell structure in which nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in (133)Sn that lie outside the double shell closure present at the short-lived nucleus (132)Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of (132)Sn.
RESUMEN
The Galactic 1.809-MeV γ-ray signature from the ß decay of ^{26g}Al is a dominant target of γ-ray astronomy, of which a significant component is understood to originate from massive stars. The ^{26g}Al(p,γ)^{27}Si reaction is a major destruction pathway for ^{26g}Al at stellar temperatures, but the reaction rate is poorly constrained due to uncertainties in the strengths of low-lying resonances in ^{27}Si. The ^{26g}Al(d,p)^{27}Al reaction has been employed in inverse kinematics to determine the spectroscopic factors, and hence resonance strengths, of proton resonances in ^{27}Si via mirror symmetry. The strength of the 127-keV resonance is found to be a factor of 4 higher than the previously adopted upper limit, and the upper limit for the 68-keV resonance has been reduced by an order of magnitude, considerably constraining the ^{26g}Al destruction rate at stellar temperatures.
RESUMEN
Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.
RESUMEN
The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be(d,âp) reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an nâj=2s(1/2) state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p(1/2) state.
RESUMEN
The rate of the (17)F(p,gamma)(18)Ne reaction is important in various astrophysical events. A previous (17)F(p,p)(17)F measurement identified a 3;{+} state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the (17)F(p,gamma)(18)Ne reaction using a mixed beam of (17)F and (17)O at ORNL. The resonance strength for the 3;{+} resonance in (18)Ne was found to be omegagamma = 33 +/- 14(stat) +/-1 7(syst) meV, corresponding to a gamma width of Gamma_{gamma} = 56 +/- 24(stat) +/- 30(syst) meV. An upper limit on the direct capture of S(E)
RESUMEN
Production of the radioisotope 18F in novae is severely constrained by the rate of the 18F(p,alpha)15O reaction. A resonance at E(c.m.)=330 keV may strongly enhance the 18F(p,alpha)15O reaction rate, but its strength has been very uncertain. We have determined the strength of this important resonance by measuring the 18F(p,alpha)15O cross section on and off resonance using a radioactive 18F beam at the ORNL Holifield Radioactive Ion Beam Facility. We find that its resonance strength is 1.48+/-0.46 eV, and that it dominates the 18F(p,alpha)15O reaction rate over a significant range of temperatures characteristic of ONeMg novae.