Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Chem Soc ; 143(3): 1598-1609, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33428383

RESUMEN

The all-alkyl α-tertiary amino acid scaffold represents an important structural feature in many biologically and pharmaceutically relevant molecules. Syntheses of this class of molecule, however, often involve multiple steps and require activating auxiliary groups on the nitrogen atom or tailored building blocks. Here, we report a straightforward, single-step, and modular methodology for the synthesis of all-alkyl α-tertiary amino esters. This new strategy uses visible light and a silane reductant to bring about a carbonyl alkylative amination reaction that combines a wide range of primary amines, α-ketoesters, and alkyl iodides to form functionally diverse all-alkyl α-tertiary amino esters. Brønsted acid-mediated in situ condensation of primary amine and α-ketoester delivers the corresponding ketiminium species, which undergoes rapid 1,2-addition of an alkyl radical (generated from an alkyl iodide by the action of visible light and silane reductant) to form an aminium radical cation. Upon a polarity-matched and irreversible hydrogen atom transfer from electron rich silane, the electrophilic aminium radical cation is converted to an all-alkyl α-tertiary amino ester product. The benign nature of this process allows for broad scope in all three components and generates structurally and functionally diverse suite of α-tertiary amino esters that will likely have widespread use in academic and industrial settings.

2.
Angew Chem Int Ed Engl ; 58(27): 9054-9059, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042003

RESUMEN

Reported is the discovery of an approach to functionalize secondary alkylamines using 2-halobenzoic acids as aryl-transfer reagents. These reagents promote an unusually mild carboxylate-assisted oxidative addition to alkylamine-derived palladacycles. In the presence of AgI salts, a decarboxylative C(sp3 )-C(sp2 ) bond reductive elimination leads to γ-aryl secondary alkylamines and renders the carboxylate motif a traceless directing group. Stoichiometric mechanistic studies were effectively translated to a Pd-catalyzed γ-C(sp3 )-H arylation process for secondary alkylamines.

3.
SLAS Discov ; 29(3): 100142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38278484

RESUMEN

Covalent hits for drug discovery campaigns are neither fantastic beasts nor mythical creatures, they can be routinely identified through electrophile-first screening campaigns using a suite of different techniques. These include biophysical and biochemical methods, cellular approaches, and DNA-encoded libraries. Employing best practice, however, is critical to success. The purpose of this review is to look at state of the art covalent hit identification, how to identify hits from a covalent library and how to select compounds for medicinal chemistry programmes.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Descubrimiento de Drogas/métodos , Humanos , Bibliotecas de Moléculas Pequeñas/química , Química Farmacéutica/métodos , Química Farmacéutica/tendencias , Ensayos Analíticos de Alto Rendimiento/métodos
4.
Drug Discov Today ; 29(10): 104143, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173704

RESUMEN

Identification of high-quality hit chemical matter is of vital importance to the success of drug discovery campaigns. However, this goal is becoming ever harder to achieve as the targets entering the portfolios of pharmaceutical and biotechnology companies are increasingly trending towards novel and traditionally challenging to drug. This demand has fuelled the development and adoption of numerous new screening approaches, whereby the contemporary hit identification toolbox comprises a growing number of orthogonal and complementary technologies including high-throughput screening, fragment-based ligand design, affinity screening (affinity-selection mass spectrometry, differential scanning fluorimetry, DNA-encoded library screening), as well as increasingly sophisticated computational predictive approaches. Herein we describe how an integrated strategy for hit discovery, whereby multiple hit identification techniques are tactically applied, selected in the context of target suitability and resource priority, represents an optimal and often essential approach to maximise the likelihood of identifying quality starting points from which to develop the next generation of medicines.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ligandos , Diseño de Fármacos/métodos
5.
J Med Chem ; 67(18): 16455-16479, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39291659

RESUMEN

Bfl-1, a member of the Bcl-2 family of proteins, plays a crucial role in apoptosis regulation and has been implicated in cancer cell survival and resistance to venetoclax therapy. Due to the unique cysteine residue in the BH3 binding site, the development of covalent inhibitors targeting Bfl-1 represents a promising strategy for cancer treatment. Herein, the optimization of a covalent cellular tool from a lead-like hit using structure based design is described. Informed by a reversible X-ray fragment screen, the strategy to establish interactions with a key glutamic acid residue (Glu78) and optimize binding in a cryptic pocket led to a 1000-fold improvement in biochemical potency without increasing reactivity of the warhead. Compound (R,R,S)-26 has a kinact/KI of 4600 M-1 s-1, shows <1 µM caspase activation in a cellular assay and cellular target engagement, and has good physicochemical properties and a promising in vivo profile.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Relación Estructura-Actividad , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Modelos Moleculares , Cristalografía por Rayos X , Ratones , Estructura Molecular , Apoptosis/efectos de los fármacos , Antígenos de Histocompatibilidad Menor
6.
J Med Chem ; 67(13): 11209-11225, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38916990

RESUMEN

Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.


Asunto(s)
Cisteína , Diseño de Fármacos , Bibliotecas de Moléculas Pequeñas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Cristalografía por Rayos X , Cisteína/química , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Relación Estructura-Actividad , Modelos Moleculares , Antígenos de Histocompatibilidad Menor
7.
ACS Med Chem Lett ; 15(6): 791-797, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38894895

RESUMEN

Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA