RESUMEN
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of ß-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.
Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Microbiología del Suelo , Suelo/química , Sacarosa/metabolismo , Zea mays/químicaRESUMEN
Climate and land use changes are causing trees line to shift up into mountain meadows. The effect of this vegetation change on the partitioning of soil carbon (C) between the labile particulate organic matter (POM-C) and stable mineral-associated organic matter (MAOM-C) pools is poorly understood. Therefore, we assessed these C pools in a 10 cm topsoil layer along forest-meadow ecotones with different land uses (reserve and pasture) in the Northwest Caucasus of Russia using the size fractionation technique (POM 0.053-2.00 mm, MAOM < 0.053 mm). Potential drivers included the amount of C input from aboveground grass biomass (AGB) and forest litter (litter quantity) and their C/N ratios, aromatic compound content (litter quality), and soil texture. For both land uses, the POM-C pool showed no clear patterns of change along forest-meadow ecotones, while the MAOM-C pool increased steadily from meadow to forest. Regardless of land use, the POM-C/MAOM-C ratio decreased threefold from meadow to forest in line with decreasing grass AGB (R2 = 0.75 and 0.29 for reserve and pasture) and increasing clay content (R2 = 0.63 and 0.36 for reserve and pasture). In pastures, an additional negative relationship was found with respect to plant litter aromaticity (R2 = 0.48). Therefore, shifting the mountain tree line in temperate climates could have a positive effect on conserving soil C stocks by increasing the proportion of stable C pools.
RESUMEN
It is common practice in agriculture to apply highcarbon amendments, e.g. straw, or nitrification inhibitors (NI) to reduce soil nitrogen (N) losses. However, little is known on the combined effects of straw and NI and how seasonal soil temperature variations further affect N immobilization. We conducted a 113-day mesocosm experiment with different levels of 15N-fertilizer application (N0: control; N1: 125 kg N ha-1; N2: 250 kg N ha-1) in an agricultural soil, amended with either wheat straw, NI or a combination of both in order to investigate N retention and loss from soil after a cooling-warming phase simulating a seasonal temperature shift, i.e., 30 days cooling phase at 7 °C and 10 days warming phase at 21 °C. Subsequently, soils were planted with barley as phytometers to study 15N-transfer to a following crop. Straw addition significantly reduced soil N-losses due to microbial N immobilization. Although carbon added as straw led to increased N2O emissions at high N fertilization, this was partly counterbalanced by NI. Soil cooling-warming strongly increased ammonification (+77 %), while nitrification was suppressed, and straw-induced microbial N immobilization dominated. N immobilized after straw addition was mineralized at the end of the experiment as indicated by structural equation models. Re-mineralization in N2 was sufficient, but still suboptimal in N0 and N1 at critical times of early barley growth. N-use efficiency of the 15N tracer decreased with fertilization intensity from 50 % in N1 to 35 % in N2, and straw amendment reduced NUE to 25 % at both fertilization rates. Straw amendment was most powerful in reducing N-losses (-41 %), in particular under variable soil temperature conditions, but NI enforced its effects by reducing N2O emission (-40 %) in N2 treatment. Sufficient N-fertilization coupled with straw application is required to adjust the timely re-mineralization of N for subsequent crops.
Asunto(s)
Nitrificación , Suelo , Suelo/química , Óxido Nitroso/análisis , Agricultura , Carbono , Fertilizantes/análisis , Nitrógeno/análisisRESUMEN
The patterns of change in bioclimatic conditions determine the vegetation cover and soil properties along the altitudinal gradient. Together, these factors control the spatial variability of soil respiration (RS) in mountainous areas. The underlying mechanisms, which are poorly understood, shape the resulting surface CO2 flux in these ecosystems. We aimed to investigate the spatial variability of RS and its drivers on the northeastern slope of the Northwest Caucasus Mountains, Russia (1,260-2,480 m a.s.l.), in mixed, fir, and deciduous forests, as well as subalpine and alpine meadows. RS was measured simultaneously in each ecosystem at 12 randomly distributed points using the closed static chamber technique. After the measurements, topsoil samples (0-10 cm) were collected under each chamber (n = 60). Several soil physicochemical, microbial, and vegetation indices were assessed as potential drivers of RS. We tested two hypotheses: (i) the spatial variability of RS is higher in forests than in grasslands; and (ii) the spatial variability of RS in forests is mainly due to soil microbial activity, whereas in grasslands, it is mainly due to vegetation characteristics. Unexpectedly, RS variability was lower in forests than in grasslands, ranging from 1.3-6.5 versus 3.4-12.7 µmol CO2 m-1 s-1, respectively. Spatial variability of RS in forests was related to microbial functioning through chitinase activity (50% explained variance), whereas in grasslands it was related to vegetation structure, namely graminoid abundance (27% explained variance). Apparently, the chitinase dependence of RS variability in forests may be related to soil N limitation. This was confirmed by low N content and high C:N ratio compared to grassland soils. The greater sensitivity of grassland RS to vegetation structure may be related to the essential root C allocation for some grasses. Thus, the first hypothesis concerning the higher spatial variability of RS in forests than in grasslands was not confirmed, whereas the second hypothesis concerning the crucial role of soil microorganisms in forests and vegetation in grasslands as drivers of RS spatial variability was confirmed.
RESUMEN
Rising air temperatures caused by global warming affects microbial decomposition rate of soil organic matter (SOM). The temperature sensitivity of SOM decomposition (Q10) may depend on SOM quality determined by vegetation type. In this study, we selected a long transect (3.6 km) across the five ecosystems and short transects (0.1 km) from grazed and ungrazed meadows to forests in the Northwest Caucasus to consider different patterns in Q10 changes at shift of the vegetation belts. It is hypothesized that Q10 will increase along altitudinal gradient in line with recalcitrance of SOM according to kinetics-based theory. The indicators of SOM quality (BR:C, respiration per unit of soil C; MBC:C, ratio of microbial biomass carbon to soil carbon; soil C:N ratio) were used for checking the hypothesis. It was shown that Q10 did not differ across vegetation types within long and short transects, regardless differences in projective cover (14-99%) and vegetation species richness (6-12 units per plot). However, Q10 value differed between the long and short transects by almost two times (on average 2.4 vs. 1.4). Such a difference was explained by environmental characteristics linked with terrain position (slope steepness, microclimate, and land forms). The Q10 changes across studied slopes were driven by BR:C for meadows (R2 = 0.64; negative relationship) and pH value for forests (R2 = 0.80; positive relationship). Thus, proxy of SOM quality explained Q10 variability only across mountain meadows, whereas for forests, soil acidity was the main driver of microbial activity.
RESUMEN
Petroleum pollution of soils is a major environmental problem. Soil microorganisms can decompose a significant fraction of petroleum hydrocarbons in soil at low concentrations (1-5%). This characteristic can be used for soil remediation after oil pollution. Microbial community dynamics and functions are well studied in cases of moderate petroleum pollution, while cases with heavy soil pollution have received much less attention. We studied bacterial and fungal successions in three different soils with high petroleum contents (6 and 25%) in a laboratory experiment. The proportion of aliphatic and aromatic compounds decreased by 4-7% in samples with 6% pollution after 120 days of incubation but remained unchanged in samples with 25% hydrocarbons. The composition of the microbial community changed significantly in all cases. Oil pollution led to an increase in the relative abundance of bacteria such as Actinobacteria and the candidate TM7 phylum (Saccaribacteria) and to a decrease in that of Bacteroidetes. The gene abundance (number of OTUs) of oil-degrading bacteria (Rhodococcus sp., candidate class TM7-3 representative) became dominant in all soil samples, irrespective of the petroleum pollution level and soil type. The fungal communities in unpolluted soil samples differed more significantly than the bacterial communities. Nonmetric multidimensional scaling revealed that in the polluted soil, successions of fungal communities differed between soils, in contrast to bacterial communities. However, these successions showed similar trends: fungi capable of lignin and cellulose decomposition, e.g., from the genera Fusarium and Mortierella, were dominant during the incubation period.
Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Contaminación por Petróleo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/aislamiento & purificaciónRESUMEN
Reforestation and agricultural conservation have long been recognized as important in reducing on-site soil loss and off-site sediment export. Quantitative assessment of their effectiveness is critical, and assists cost-benefit analysis and decision-making in land management and landscape planning. We applied a paired watershed approach to monitor 1-year sediment export in two watersheds with forest-dominated (reference) and mosaic (target) land use in the Naban River Watershed National Natural Reserve (NRWNNR) in Xishuangbanna, south-western China. Analysis of land-use change in the target watersheds showed decreasing total forest cover (FC) (from 57% to 47%), but increasing FC in steep areas (from 54% to 59%) from 2007 to 2012. A distributed hydrological model (Land-Use Change Impact Assessment, LUCIA) was well calibrated and validated through field data from the two watersheds. Scenarios were created representing different FCs (from 31% to 83%) and agricultural management (as-usual and conservation). Simulation results quantified the relation between FC and sediment export as a logarithmic or logit model, indicating at least one turning point of FC, beyond which further forest reduction should significantly increase sediment export. This point was identified in the range between 57% and 61% of the target watershed under as-usual management; it was shifted to 47%-53% by conservation agriculture. Compared with the reference (with 83% FC), conservation agriculture was able to almost fully compensate for increased sediment export by forest reduction to 57% in 2007. However, when forest was reduced further to 47% in 2012, sediment export increased significantly. We concluded that total FC was as important as FC in montane watershed management in steep areas; and crop type conversion, such as rubber to maize in this study, and on-site agriculture management affect more to sediment export than agricultural expansion. We recommend conservation agriculture as an efficient tool for reducing sediment export on a watershed scale.
RESUMEN
Input of labile carbon may accelerate the decomposition of existing soil organic matter (priming effect), with the priming intensity depending on changes in soil nitrogen availability after permafrost thaw. However, experimental evidence for the linkage between the priming effect and post-thaw nitrogen availability is unavailable. Here we test the hypothesis that elevated nitrogen availability after permafrost collapse inhibits the priming effect by increasing microbial metabolic efficiency based on a combination of thermokarst-induced natural nitrogen gradient and nitrogen addition experiment. We find a negative correlation between the priming intensity and soil total dissolved nitrogen concentration along the thaw sequence. The negative effect is confirmed by the reduced priming effect after nitrogen addition. In contrast to the prevailing view, this nitrogen-regulated priming intensity is independent of extracellular enzyme activities but associated with microbial metabolic efficiency. These findings demonstrate that post-thaw nitrogen availability regulates topsoil carbon dynamics through its modification of microbial metabolic efficiency.
Asunto(s)
Bacterias/metabolismo , Carbono/análisis , Nitrógeno/metabolismo , Hielos Perennes , Suelo/química , Bacterias/enzimología , Dióxido de Carbono/metabolismoRESUMEN
Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers ((14)C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.
Asunto(s)
Altitud , Suelo/química , Temperatura , Carbono/química , Ciclo del CarbonoRESUMEN
Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)-the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed.
Asunto(s)
Carbono/metabolismo , Raíces de Plantas/metabolismo , Rizosfera , Microbiología del Suelo , Beta vulgaris/metabolismo , Biomasa , Dióxido de Carbono/química , ADN Bacteriano/genética , Ecosistema , Glucosa/química , Interacciones Microbianas , Nitrógeno/química , Suelo/química , Factores de TiempoRESUMEN
Increased root exudation under elevated atmospheric CO(2) and the contrasting environments in soil macro- and microaggregates could affect microbial growth strategies. We investigated the effect of elevated CO(2) on the contribution of fast- (r-strategists) and slow-growing (K-strategists) microorganisms in soil macro- and microaggregates. We fractionated the bulk soil from the ambient and elevated (for 5 years) CO(2) treatments of FACE-Hohenheim (Stuttgart) into large macro- (>2 mm), small macro- (0.25-2.00 mm), and microaggregates (<0.25 mm) using 'optimal moist' sieving. Microbial biomass (C(mic)), the maximum specific growth rate (mu), growing microbial biomass (GMB) and lag-period (t(lag)) were estimated by the kinetics of CO(2) emission from bulk soil and aggregates amended with glucose and nutrients. Although C(org) and C(mic) were unaffected by elevated CO(2), mu values were significantly higher under elevated than ambient CO(2) for bulk soil, small macroaggregates, and microaggregates. Substrate-induced respiratory response increased with decreasing aggregate size under both CO(2) treatments. Based on changes in mu, GMB and lag period, we conclude that elevated atmospheric CO(2) stimulated the r-selected microorganisms, especially in soil microaggregates. Such an increase in r-selected microorganisms indicates acceleration of available C mineralization in soil, which may counterbalance the additional C input by roots in soils in a future elevated atmospheric CO(2) environment.