Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664586

RESUMEN

The natural product hinokitiol mobilizes iron across lipid bilayers at low concentrations and restores hemoglobinization in iron transporter protein-deficient systems. But hinokitiol fails to similarly mobilize iron at higher concentrations, limiting its uses in chemical biology and medicine. Here we show that at higher concentrations, hinokitiol3:Fe(III) complexes form large, higher-order aggregates, leading to loss of transmembrane iron mobilization. Guided by this understanding and systematic structure-function studies enabled by modular synthesis, we identified FeM-1269, which minimally aggregates and dose-dependently mobilizes iron across lipid bilayers even at very high concentrations. In contrast to hinokitiol, FeM-1269 is also well-tolerated in animals at high doses for extended periods of time. In a mouse model of anemia of inflammation, FeM-1269 increases serum iron, transferrin saturation, hemoglobin and hematocrit. This rationally developed iron-mobilizing small molecule has enhanced potential as a molecular prosthetic for understanding and potentially treating iron transporter deficiencies.

2.
Mol Microbiol ; 107(5): 610-622, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266479

RESUMEN

Lignocellulose degradation by microbes plays a central role in global carbon cycling, human gut metabolism and renewable energy technologies. While considerable effort has been put into understanding the biochemical aspects of lignocellulose degradation, much less work has been done to understand how these enzymes work in an in vivo context. Here, we report a systems level study of xylan degradation in the saprophytic bacterium Cellvibrio japonicus. Transcriptome analysis indicated seven genes that encode carbohydrate active enzymes were up-regulated during growth with xylan containing media. In-frame deletion analysis of these genes found that only gly43F is critical for utilization of xylo-oligosaccharides, xylan, and arabinoxylan. Heterologous expression of gly43F was sufficient for the utilization of xylo-oligosaccharides in Escherichia coli. Additional analysis found that the xyn11A, xyn11B, abf43L, abf43K, and abf51A gene products were critical for utilization of arabinoxylan. Furthermore, a predicted transporter (CJA_1315) was required for effective utilization of xylan substrates, and we propose this unannotated gene be called xntA (xylan transporter A). Our major findings are (i) C. japonicus employs both secreted and surface associated enzymes for xylan degradation, which differs from the strategy used for cellulose degradation, and (ii) a single cytoplasmic ß-xylosidase is essential for the utilization of xylo-oligosaccharides.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cellvibrio/enzimología , Citoplasma/metabolismo , Xilanos/metabolismo , Xilosidasas/metabolismo , Proteínas Bacterianas/genética , Cellvibrio/genética , Simulación por Computador , Escherichia coli/enzimología , Escherichia coli/genética , Fermentación , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Bacterianos , Análisis de Secuencia de ARN , Xilosidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA