Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38853496

RESUMEN

BACKGROUND: The upsurge of antimicrobial resistance demands innovative strategies to fight bacterial infections. With traditional antibiotics becoming less effective, anti-virulence agents or pathoblockers, arise as an alternative approach that seeks to disarm pathogens without affecting their viability, thereby reducing selective pressure for the emergence of resistance mechanisms. OBJECTIVES: To elucidate the mechanism of action of compound N'-(thiophen-2-ylmethylene)benzohydrazide (A16B1), a potent synthetic hydrazone inhibitor against the Salmonella PhoP/PhoQ system, essential for virulence. MATERIALS AND METHODS: The measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes was used to evaluate the specificity of A16B1 to the PhoP regulon. Autokinase activity assays with either the native or truncated versions of PhoQ were used to dissect the A16B1 mechanism of action. The effect of A16B1 on Salmonella intramacrophage replication was assessed using the gentamicin protection assay. The checkerboard assay approach was used to analyse potentiation effects of colistin with the hydrazone. The Galleria mellonella infection model was chosen to evaluate A16B1 as an in vivo therapy against Salmonella. RESULTS: A16B1 repressed the Salmonella PhoP/PhoQ system activity, specifically targeting PhoQ within the second transmembrane region. A16B1 demonstrates synergy with the antimicrobial peptide colistin, reduces the intramacrophage proliferation of Salmonella without being cytotoxic and enhances the survival of G. mellonella larvae systemically infected with Salmonella. CONCLUSIONS: A16B1 selectively inhibits the activity of the Salmonella PhoP/PhoQ system through a novel inhibitory mechanism, representing a promising synthetic hydrazone compound with the potential to function as a Salmonella pathoblocker. This offers innovative prospects for combating Salmonella infections while mitigating the risk of antimicrobial resistance emergence.

2.
World J Microbiol Biotechnol ; 39(9): 250, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37439894

RESUMEN

Ruminants enable the conversion of indigestible plant material into animal consumables, including dairy products, meat, and valuable fibers. Microbiome research is gaining popularity in livestock species because it aids in the knowledge of illnesses and efficiency processes in animals. In this study, we use WGS metagenomic data to thoroughly characterize the ruminal ecosystem of cows to infer positive and negative livestock traits determined by the microbiome. The rumen of cows from Argentina were described by combining different gene biomarkers, pathways composition and taxonomic information. Taxonomic characterization indicated that the two major phyla were Bacteroidetes and Firmicutes; in third place, Proteobacteria was highly represented followed by Actinobacteria; Prevotella, and Bacteroides were the most abundant genera. Functional profiling of carbohydrate-active enzymes indicated that members of the Glycoside Hydrolase (GH) class accounted for 52.2 to 55.6% of the total CAZymes detected, among them the most abundant were the oligosaccharide degrading enzymes. The diversity of GH families found suggested efficient hydrolysis of complex biomass. Genes of multidrug, macrolides, polymyxins, beta-lactams, rifamycins, tetracyclines, and bacitracin resistance were found below 0.12% of relative abundance. Furthermore, the clustering analysis of genera and genes that correlated to methane emissions or feed efficiency, suggested that the cows analysed could be regarded as low methane emitters and clustered with high feed efficiency reference animals. Finally, the combination of bioinformatic analyses used in this study can be applied to assess cattle traits difficult to measure and guide enhanced nutrition and breeding methods.


Asunto(s)
Microbiota , Rumen , Femenino , Bovinos , Animales , Microbiota/genética , Metagenoma , Bacterias , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Metano/metabolismo , Alimentación Animal , Dieta
3.
J Appl Microbiol ; 132(2): 1152-1165, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34487594

RESUMEN

AIMS: Fermented feed is an agricultural practice used in many regions of the world to improve the growth performance of farm animals. This study aimed to identify and evaluate the lactic acid bacteria and yeast involved in the production of fermented feed. METHODS AND RESULTS: We isolated and described two micro-organisms from autochthonous microbiota origin present in a regional feed product, Lactobacillus paracasei IBR07 (Lacticaseibacillus paracasei) and Kazachstania unispora IBR014 (Saccharomyces unisporum). Genome sequence analyses were performed to characterize both micro-organisms. Potential pathways involved in the acid response, tolerance and persistence were predicted in both genomes. Although L. paracasei and K. unispora are considered safe for animal feed, we analysed the presence of virulence factors, antibiotic resistance and pathogenicity islands. Furthermore, the Galleria mellonella model was used to support the safety of both isolates. CONCLUSIONS: We conclude that IBR07 and IBR014 strains are good candidates to be used as starter cultures for feed fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The data presented here will be helpful to explore other biotechnological aspects and constitute a starting point for further studies to establish the consumption benefit of fermented feed in farm animal production.


Asunto(s)
Lacticaseibacillus paracasei , Lactobacillales , Alimentación Animal , Animales , Fermentación , Microbiología de Alimentos , Genómica
4.
Mol Microbiol ; 113(2): 464-477, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31755602

RESUMEN

Enterococci are gram-positive pathogens and lead to cause hospital-acquired infections worldwide. Central carbon metabolism was shown as highly induced in Enterococcus faecalis during infection context. Metabolism of α-polysaccharides was previously described as an important factor for host colonisation and biofilm formation. A better characterisation of the adaptation of this bacterium to carbohydrate availabilities may lead to a better understanding of the link between carbohydrate metabolism and the infection process of E. faecalis. Here we show that MalR, a LacI/GalR transcriptional regulator, is the main factor in the regulation of the two divergent operons involved in maltose metabolism in this bacterium. The malR gene is transcribed from the malP promoter, but also from an internal promoter inside the gene located upstream of malR. In the absence of maltose, MalR acts as a repressor and in the presence of glucose, it exerts efficient CcpA-independent carbon catabolite repression. The central PTS protein P-Ser-HPr interacts directly with MalR and enhances its DNA binding capacity, which allows E. faecalis to adapt its metabolism to environmental conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Proteínas Represoras/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Enterococcus faecalis/genética , Regulación Bacteriana de la Expresión Génica , Maltosa/metabolismo , Operón , Regiones Promotoras Genéticas
5.
Appl Microbiol Biotechnol ; 104(3): 1175-1186, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31828406

RESUMEN

Enterococcus faecium is frequently isolated from fermented food; in particular, they positively contribute to the aroma compound generation in traditional cheese. Citrate fermentation is a desirable property in these bacteria, but this feature is not uniformly distributed among E. faecium strains. In the present study, three selected E. faecium strains, IQ110 (cit-), GM70 (cit+ type I), and Com12 (cit+ type II), were analyzed in their production of aroma compounds in milk. End products and volatile organic compounds (VOCs) were determined by solid-phase micro-extraction combined with gas chromatography mass spectrometry (SPME-GC-MS). Principal component analysis (PCA) of aroma compound profiles revealed a different VOC composition for the three strains. In addition, resting cell experiments of E. faecium performed in the presence of leucine, citrate, or pyruvate as aroma compound precursors allowed us to determine metabolic differences between the studied strains. GM70 (cit+ type I) showed an active citrate metabolism, with increased levels of diacetyl and acetoin generation relative to Com12 or to citrate defective IQ110 strains. In addition, in the experimental conditions tested, a defective citrate-fermenting phenotype for the Com12 strain was found, while its leucine degradation and pyruvate metabolism were conserved. In conclusion, rational selection of E. faecium strains could be performed based on genotypic and phenotypic analyses. This would result in a performing strain, such as GM70, that could positively contribute to flavor, with typical notes of diacetyl, acetoin, 3-methyl butanal, and 3-methyl butanol in an adjuvant culture.


Asunto(s)
Ácido Cítrico/metabolismo , Enterococcus faecium/metabolismo , Leucina/metabolismo , Leche/química , Compuestos Orgánicos Volátiles/metabolismo , Animales , Enterococcus faecium/genética , Fermentación , Microbiología de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Leche/microbiología , Odorantes , Gusto
6.
J Bacteriol ; 199(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242718

RESUMEN

Maltodextrin is a mixture of maltooligosaccharides, which are produced by the degradation of starch or glycogen. They are mostly composed of α-1,4- and some α-1,6-linked glucose residues. Genes presumed to code for the Enterococcus faecalis maltodextrin transporter were induced during enterococcal infection. We therefore carried out a detailed study of maltodextrin transport in this organism. Depending on their length (3 to 7 glucose residues), E. faecalis takes up maltodextrins either via MalT, a maltose-specific permease of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), or the ATP binding cassette (ABC) transporter MdxEFG-MsmX. Maltotriose, the smallest maltodextrin, is primarily transported by the PTS permease. A malT mutant therefore exhibits significantly reduced growth on maltose and maltotriose. The residual uptake of the trisaccharide is catalyzed by the ABC transporter, because a malT mdxF double mutant no longer grows on maltotriose. The trisaccharide arrives as maltotriose-6″-P in the cell. MapP, which dephosphorylates maltose-6'-P, also releases Pi from maltotriose-6″-P. Maltotetraose and longer maltodextrins are mainly (or exclusively) taken up via the ABC transporter, because inactivation of the membrane protein MdxF prevents growth on maltotetraose and longer maltodextrins up to at least maltoheptaose. E. faecalis also utilizes panose and isopanose, and we show for the first time, to our knowledge, that in contrast to maltotriose, its two isomers are primarily transported via the ABC transporter. We confirm that maltodextrin utilization via MdxEFG-MsmX affects the colonization capacity of E. faecalis, because inactivation of mdxF significantly reduced enterococcal colonization and/or survival in kidneys and liver of mice after intraperitoneal infection.IMPORTANCE Infections by enterococci, which are major health care-associated pathogens, are difficult to treat due to their increasing resistance to clinically relevant antibiotics, and new strategies are urgently needed. A largely unexplored aspect is how these pathogens proliferate and which substrates they use in order to grow inside infected hosts. The use of maltodextrins as a source of carbon and energy was studied in Enterococcus faecalis and linked to its virulence. Our results demonstrate that E. faecalis can efficiently use glycogen degradation products. We show here that depending on the length of the maltodextrins, one of two different transporters is used: the maltose-PTS transporter MalT, or the MdxEFG-MsmX ABC transporter. MdxEFG-MsmX takes up longer maltodextrins as well as complex molecules, such as panose and isopanose.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Enterococcus faecalis/enzimología , Enterococcus faecalis/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Polisacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Riñón/microbiología , Hígado/microbiología , Maltosa/farmacología , Proteínas de Transporte de Membrana/genética , Ratones , Mutación , Oligosacáridos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Trisacáridos/farmacología
7.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455338

RESUMEN

Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose.IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/enzimología , Hidrolasas/metabolismo , Polisacáridos/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/genética , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Hidrolasas/genética , Maltosa/metabolismo , Oligosacáridos/metabolismo , Operón , Trisacáridos/metabolismo
8.
BMC Genomics ; 15: 489, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24942651

RESUMEN

BACKGROUND: Enterococcus mundtii is a yellow-pigmented microorganism rarely found in human infections. The draft genome sequence of E. mundtii was recently announced. Its genome encodes at least 2,589 genes and 57 RNAs, and 4 putative genomic islands have been detected. The objective of this study was to compare the genetic content of E. mundtii with respect to other enterococcal species and, more specifically, to identify genes coding for putative virulence traits present in enterococcal opportunistic pathogens. RESULTS: An in-depth mining of the annotated genome was performed in order to uncover the unique properties of this microorganism, which allowed us to detect a gene encoding the antimicrobial peptide mundticin among other relevant features. Moreover, in this study a comparative genomic analysis against commensal and pathogenic enterococcal species, for which genomic sequences have been released, was conducted for the first time. Furthermore, our study reveals significant similarities in gene content between this environmental isolate and the selected enterococci strains (sharing an "enterococcal gene core" of 805 CDS), which contributes to understand the persistence of this genus in different niches and also improves our knowledge about the genetics of this diverse group of microorganisms that includes environmental, commensal and opportunistic pathogens. CONCLUSION: Although E. mundtii CRL1656 is phylogenetically closer to E. faecium, frequently responsible of nosocomial infections, this strain does not encode the most relevant relevant virulence factors found in the enterococcal clinical isolates and bioinformatic predictions indicate that it possesses the lowest number of putative pathogenic genes among the most representative enterococcal species. Accordingly, infection assays using the Galleria mellonella model confirmed its low virulence.


Asunto(s)
Antibiosis/genética , Enterococcus/genética , Genoma Bacteriano , Genómica , Bacteriocinas/genética , Hibridación Genómica Comparativa , Farmacorresistencia Bacteriana/genética , Enterococcus/clasificación , Enterococcus/patogenicidad , Microbiología Ambiental , Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal , Islas Genómicas , Humanos , Filogenia , Pigmentos Biológicos/genética , Estrés Fisiológico/genética , Virulencia/genética , Factores de Virulencia/genética
9.
Mol Microbiol ; 88(2): 234-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23490043

RESUMEN

Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase, which in B. subtilis hydrolyses maltose 6'-P into glucose and glucose 6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6-P into glucose 1-P and glucose 6-P. However, purified MalP phosphorolyses maltose but not maltose 6'-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6'-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6'-P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6'-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalysed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage.


Asunto(s)
Enterococcus faecalis/enzimología , Maltosa/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfatos de Azúcar/metabolismo , alfa-Glucosidasas/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Mutación , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , alfa-Glucosidasas/genética
10.
Int J Food Microbiol ; 419: 110736, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38772216

RESUMEN

Enterococcus faecalis is a phylogenetically and industrially relevant microorganism associated with Lactic Acid Bacteria. Some strains of this bacterium are employed as probiotics in commercial applications, while others serve as the principal component in starter cultures for artisanal regional cheese production. However, over the last decade, this species has emerged as an opportunistic multiresistant pathogen, raising concerns about its impact on human health. Recently, we identified multiple potassium transporter systems in E. faecalis, including the Ktr systems (KtrAB and KtrAD), Kup, KimA and Kdp complex (KdpFABC). Nevertheless, the physiological significance of these proteins remains not fully understood. In this study, we observed that the kup gene promoter region in the JH2-2 strain was modified due to the insertion of a complete copy of the IS6770 insertion sequence. Consequently, we investigated the influence of IS6770 on the expression of the kup gene. To achieve this, we conducted a mapping of the promoter region of this gene in the E. faecalis JH2-2 strain, employing fluorescence gene reporters. In addition, a transcriptional analysis of the kup gene was executed in a strain derived from E. faecalis V583 that lacks the IS30-related insertion element, facilitating the identification of the transcriptional start site. Next, the expression of the kup gene was evaluated via RT-qPCR under different pH stressful conditions. A strong upregulation of the kup gene was observed at an initial pH of 5.0 in the strain derived from E. faecalis V583. However, the activation of transcription was not observed in the E. faecalis JH2-2 strain due to the hindrance caused by the presence of IS6770. Besides that, our computational analysis of E. faecalis genomes elucidates a plausible association between transposition and the regulation of the kup gene. Remarkably, the ubiquitous presence of IS6770 throughout the phylogenetic tree implies its ancient existence within E. faecalis. Moreover, the recurrent co-occurrence of IS6770 with the kup gene, observed in 30 % of IS6770-positive strains, alludes to the potential involvement of this genomic arrangement in the adaptive strategies of E. faecalis across diverse niches.


Asunto(s)
Proteínas Bacterianas , Enterococcus faecalis , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN , Transcripción Genética , Potasio/metabolismo
11.
Sci Rep ; 14(1): 5148, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429351

RESUMEN

Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.


Asunto(s)
Mariposas Nocturnas , Infecciones por Salmonella , Animales , Colistina/farmacología , Colistina/uso terapéutico , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Infecciones por Salmonella/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
12.
Appl Environ Microbiol ; 79(9): 2882-90, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23435880

RESUMEN

Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.


Asunto(s)
Carboxiliasas/genética , Enterococcus faecalis/enzimología , Complejos Multienzimáticos/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Carboxiliasas/aislamiento & purificación , Carboxiliasas/metabolismo , Ácido Cítrico/metabolismo , Citoplasma/enzimología , Enterococcus faecalis/genética , Enterococcus faecalis/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Complejos Multienzimáticos/aislamiento & purificación , Complejos Multienzimáticos/metabolismo , Ácido Oxaloacético/metabolismo , Subunidades de Proteína , Proteínas Recombinantes , Eliminación de Secuencia , Transgenes
13.
Front Microbiol ; 14: 1117684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846772

RESUMEN

Enterococcus is able to grow in media at pH from 5.0 to 9.0 and a high concentration of NaCl (8%). The ability to respond to these extreme conditions requires the rapid movement of three critical ions: proton (H+), sodium (Na+), and potassium (K+). The activity of the proton F0F1 ATPase and the sodium Na+ V0V1 type ATPase under acidic or alkaline conditions, respectively, is well established in these microorganisms. The potassium uptake transporters KtrI and KtrII were described in Enterococcus hirae, which were associated with growth in acidic and alkaline conditions, respectively. In Enterococcus faecalis, the presence of the Kdp (potassium ATPase) system was early established. However, the homeostasis of potassium in this microorganism is not completely explored. In this study, we demonstrate that Kup and KimA are high-affinity potassium transporters, and the inactivation of these genes in E. faecalis JH2-2 (a Kdp laboratory natural deficient strain) had no effect on the growth parameters. However, in KtrA defective strains (ΔktrA, ΔkupΔktrA) an impaired growth was observed under stress conditions, which was restored to wild type levels by external addition of K+ ions. Among the multiplicity of potassium transporters identify in the genus Enterococcus, Ktr channels (KtrAB and KtrAD), and Kup family symporters (Kup and KimA) are present and may contribute to the particular resistance of these microorganisms to different stress conditions. In addition, we found that the presence of the Kdp system in E. faecalis is strain-dependent, and this transporter is enriched in strains of clinical origin as compared to environmental, commensal, or food isolates.

14.
Acta Trop ; 241: 106889, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893830

RESUMEN

Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Administración Intranasal , Inmunidad Mucosa , Ganglios Linfáticos , Enfermedad de Chagas/prevención & control , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Inmunoglobulina G , Ratones Endogámicos BALB C
15.
J Bacteriol ; 194(2): 550, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22207752

RESUMEN

We report the draft genome sequence of Enterococcus mundtii CRL1656, which was isolated from the stripping milk of a clinically healthy adult Holstein dairy cow from a dairy farm of the northwestern region of Tucumán (Argentina). The 3.10-Mb genome sequence consists of 450 large contigs and contains 2,741 predicted protein-coding genes.


Asunto(s)
Enterococcus/clasificación , Enterococcus/genética , Genoma Bacteriano , Animales , Argentina/epidemiología , Bovinos , Femenino , Mastitis Bovina/epidemiología , Mastitis Bovina/microbiología , Leche/microbiología , Datos de Secuencia Molecular
16.
Appl Environ Microbiol ; 78(6): 1936-45, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22247139

RESUMEN

In Enterococcus faecalis, the mae locus is constituted by two putative divergent operons, maePE and maeKR. The first operon encodes a putative H(+)/malate symporter (MaeP) and a malic enzyme (MaeE) previously shown to be essential for malate utilization in this bacterium. The maeKR operon encodes two putative proteins with significant similarity to two-component systems involved in sensing malate and activating its assimilation in bacteria. Our transcriptional and genetic assays showed that maePE and maeKR are induced in response to malate by the response regulator MaeR. In addition, we observed that both operons were partially repressed in the presence of glucose. Accordingly, the cometabolism of this sugar and malate was detected. The binding of the complex formed by CcpA and its corepressor P-Ser-HPr to a cre site located in the mae region was demonstrated in vitro and explains the carbon catabolite repression (CCR) observed for the maePE operon. However, our results also provide evidence for a CcpA-independent CCR mechanism regulating the expression of both operons. Finally, a biomass increment of 40 or 75% was observed compared to the biomass of cells grown only on glucose or malate, respectively. Cells cometabolizing both carbon sources exhibit a higher rate of glucose consumption and a lower rate of malate utilization. The growth improvement achieved by E. faecalis during glucose-malate cometabolism might explain why this microorganism employs different regulatory systems to tightly control the assimilation of both carbon sources.


Asunto(s)
Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulación Bacteriana de la Expresión Génica , Malatos/metabolismo , Operón , Transcripción Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomasa , Enterococcus faecalis/crecimiento & desarrollo , Glucosa/metabolismo
17.
Vaccine ; 40(15): 2311-2323, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35279330

RESUMEN

The new generation of vaccines for Chagas disease, are focused to induce both humoral and cellular response to effectively control Trypanosoma cruzi parasites. The administration of vaccine formulations intranasally has the advantage over parenteral routes that can induce a specific response at mucosal and systemic levels. This study aimed to evaluate and compare the immunogenicity and prophylactic effectiveness of two Trans-sialidase (TS)-based mucosal vaccines against T. cruzi administered intranasally. Vaccines consisted of a recombinant fragment of TS expressed in Lactococcus lactis formulated in two different adjuvants. The first, was an immunostimulant particle (ISPA, an ISCOMATRIX-like adjuvant), while the second was the dinucleotide c-di-AMP, which have shown immunostimulant properties at the mucosal level. BALB/c mice were immunized intranasally (3 doses, one every two weeks) with each formulation (TS + ISPA or TS + c-di-AMP) and with TS alone or vehicle (saline solution) as controls. Fifteen days after the last immunization, both TS + ISPA or TS + c-di-AMP induced an evident systemic humoral and cellular response, as judged by the increased plasma anti-TS IgG2a titers and IgG2a/IgG1 ratio and enhanced cellular response against TS. Plasma derived antibodies from TS + c-di-AMP also inhibit in vitro the invasion capacity of T. cruzi. Furthermore, specific secretory IgA was more enhanced in TS + c-di-AMP group. Protective efficacy was proved in vaccinated animals by an oral T. cruzi-challenge. Parasitemia control was only achieved by animals vaccinated with TS + c-di-AMP, despite all vaccinates groups showed enhanced CD8+IFN-γ+ T cell numbers. In addition, it was reflected during the acute phase in a significant reduction of tissue parasite load, clinical manifestations and diminished tissue damage. The better prophylactic capacity elicited by TS + c-di-AMP was related to the induction of neutralizing plasma antibodies and augmented levels of mucosal IgA since TS + ISPA and TS + c-di-AMP groups displayed similar immunogenicity and CD8+IFN-γ+ T-cell response. Therefore, TS + c-di-AMP formulation appears as a promising strategy for prophylaxis against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Trypanosoma cruzi , Animales , Enfermedad de Chagas/prevención & control , Fosfatos de Dinucleósidos , Glicoproteínas , Inmunización , Ratones , Ratones Endogámicos BALB C , Neuraminidasa
18.
BMC Microbiol ; 11: 227, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21989394

RESUMEN

BACKGROUND: In Enterococcus faecalis the genes encoding the enzymes involved in citrate metabolism are organized in two divergent operons, citHO and oadHDB-citCDEFX-oadA-citMG (citCL locus). Expression of both operons is specifically activated by adding citrate to the medium. This activation is mediated by binding of the GntR-like transcriptional regulator (CitO) to the cis-acting sequences located in the cit intergenic region. Early studies indicated that citrate and glucose could not be co-metabolized suggesting some form of catabolite repression, however the molecular mechanism remained unknown. RESULTS: In this study, we observed that the citHO promoter is repressed in the presence of sugars transported by the Phosphoenolpyruvate:carbohydrate Phosphotranserase System (PTS sugars). This result strongly suggested that Carbon Catabolic Repression (CCR) impedes the expression of the activator CitO and the subsequent induction of the cit pathway. In fact, we demonstrate that CCR is acting on both promoters. It is partially relieved in a ccpA-deficient E. faecalis strain indicating that a CcpA-independent mechanism is also involved in regulation of the two operons. Furthermore, sequence analysis of the citH/oadH intergenic region revealed the presence of three putative catabolite responsive elements (cre). We found that they are all active and able to bind the CcpA/P-Ser-HPr complex, which downregulates the expression of the cit operons. Systematic mutation of the CcpA/P-Ser-HPr binding sites revealed that cre1 and cre2 contribute to citHO repression, while cre3 is involved in CCR of citCL. CONCLUSION: In conclusion, our study establishes that expression of the cit operons in E. faecalis is controlled by CCR via CcpA-dependent and -independent mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácido Cítrico/metabolismo , Regulación hacia Abajo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Operón , Proteínas Represoras/metabolismo , Elementos de Respuesta , Proteínas Bacterianas/genética , Secuencia de Bases , Represión Catabólica , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/genética
19.
J Bacteriol ; 190(22): 7419-30, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18805984

RESUMEN

The genome of the gram-positive bacterium Enterococcus faecalis contains the genes that encode the citrate lyase complex. This complex splits citrate into oxaloacetate and acetate and is involved in all the known anaerobic bacterial citrate fermentation pathways. Although citrate fermentation in E. faecalis has been investigated before, the regulation and transcriptional pattern of the cit locus has still not been fully explored. To fill this gap, in this paper we demonstrate that the GntR transcriptional regulator CitO is a novel positive regulator involved in the expression of the cit operons. The transcriptional analysis of the cit clusters revealed two divergent operons: citHO, which codes for the transporter (citH) and the regulatory protein (citO), and upstream from it and in the opposite direction the oadHDB-citCDEFX-oadA-citMG operon, which includes the citrate lyase subunits (citD, citE, and citF), the soluble oxaloacetate decarboxylase (citM), and also the genes encoding a putative oxaloacetate decarboxylase complex (oadB, oadA, oadD and oadH). This analysis also showed that both operons are specifically activated by the addition of citrate to the medium. In order to study the functional role of CitO, a mutant strain with an interrupted citO gene was constructed, causing a total loss of the ability to degrade citrate. Reintroduction of a functional copy of citO to the citO-deficient strain restored the response to citrate and the Cit(+) phenotype. Furthermore, we present evidence that CitO binds to the cis-acting sequences O(1) and O(2), located in the cit intergenic region, increasing its affinity for these binding sites when citrate is present and allowing the induction of both cit promoters.


Asunto(s)
Citratos/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Familia de Multigenes/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Northern Blotting , Citratos/farmacología , Huella de ADN , Ensayo de Cambio de Movilidad Electroforética , Enterococcus faecalis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Genéticos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación , Operón/genética , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Transcripción Genética/efectos de los fármacos
20.
PLoS One ; 13(10): e0205787, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30335810

RESUMEN

Citrate is an ubiquitous compound in nature. However, citrate fermentation is present only in a few pathogenic or nonpathogenic microorganisms. The citrate fermentation pathway includes a citrate transporter, a citrate lyase complex, an oxaloacetate decarboxylase and a regulatory system. Enterococcus faecalis is commonly present in the gastro-intestinal microbiota of warm-blooded animals and insect guts. These bacteria can also cause infection and disease in immunocompromised individuals. In the present study, we performed whole genome analysis in Enterococcus strains finding that the complete citrate pathway is present in all of the E. faecalis strains isolated from such diverse habitats as animals, hospitals, water, milk, plants, insects, cheese, etc. These results indicate the importance of this metabolic preservation for persistence and growth of E. faecalis in different niches. We also analyzed the role of citrate metabolism in the E. faecalis pathogenicity. We found that an E. faecalis citrate fermentation-deficient strain was less pathogenic for Galleria mellonella larvae than the wild type. Furthermore, strains with deletions in the oxaloacetate decarboxylase subunits or in the α-acetolactate synthase resulted also less virulent than the wild type strain. We also observed that citrate promoters are induced in blood, urine and also in the hemolymph of G. mellonella. In addition, we showed that citrate fermentation allows E. faecalis to grow better in blood, urine and G. mellonella. The results presented here clearly indicate that citrate fermentation plays an important role in E. faecalis opportunistic pathogenic behavior.


Asunto(s)
Ácido Cítrico/metabolismo , Enterococcus faecalis/patogenicidad , Fermentación/genética , Infecciones por Bacterias Grampositivas/microbiología , Infecciones Oportunistas/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Enterococcus faecalis/genética , Enterococcus faecalis/inmunología , Enterococcus faecalis/metabolismo , Fermentación/inmunología , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano/genética , Infecciones por Bacterias Grampositivas/inmunología , Humanos , Redes y Vías Metabólicas/genética , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Familia de Multigenes/genética , Infecciones Oportunistas/inmunología , Regiones Promotoras Genéticas/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA