Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 69(5): e12898, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35178799

RESUMEN

Ciliates are defined by the presence of dimorphic nuclei as they have both a somatic macronucleus and germline micronucleus within each individual cell. The size and structure of both germline micronuclei and somatic macronuclei vary tremendously among ciliates. Except just after conjugation (i.e. the nuclear exchange in their life cycle), the germline micronucleus is transcriptionally inactive and contains canonical chromosomes that will be inherited between generations. In contrast, the transcriptionally active macronucleus contains chromosomes that vary in size in different classes of ciliates, with some lineages having extensively fragmented gene-sized somatic chromosomes while others contain longer multigene chromosomes. Here, we describe the variation in somatic macronuclear architecture in lineages sampled across the ciliate tree of life, specifically focusing on lineages with extensively fragmented chromosomes (e.g. the classes Phyllopharyngea and Spirotrichea). Further, we synthesize information from the literature on the development of ciliate macronuclei, focusing on changes in nuclear architecture throughout life cycles. These data highlight the tremendous diversity among ciliate nuclear cycles, extend our understanding of patterns of genome evolution, and provide insight into different germline and somatic nuclear features (e.g. nuclear structure and development) among eukaryotes.


Asunto(s)
Cilióforos , Macronúcleo , Animales , Núcleo Celular/genética , Cilióforos/genética , Estadios del Ciclo de Vida , Macronúcleo/genética , Macronúcleo/metabolismo
2.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496511

RESUMEN

Marginal zone (MZ) B cells bridge innate and adaptive immunity by sensing bloodborne antigens and producing rapid antibody and cytokine responses. CD55 is a membrane-bound complement regulator that interferes with complement activation, an important component of innate immunity. CD55 also regulates adaptive immunity-CD55 downregulation is critical for germinal center reactions. MZ B cells also express low CD55, but its role in MZ B cell function is unknown. Using germline knockout mice, we found that similar numbers of MZ B cells are initially established in 3-week-old CD55-deficient mice compared to wild-type (WT) mice. However, MZ B cells fail to accumulate as mice age and undergo increased apoptosis. Following ex vivo stimulation of MZ B cells through Toll-like receptor 9, we observed a proinflammatory phenotype with increased IL-6 expression. These findings demonstrate a critical role for CD55 in supporting MZ B cell survival while also regulating cellular function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA