Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 23(4): 532-542, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35332327

RESUMEN

The use of lipid-formulated RNA vaccines for cancer or COVID-19 is associated with dose-limiting systemic inflammatory responses in humans that were not predicted from preclinical studies. Here, we show that the 'interleukin 1 (IL-1)-interleukin 1 receptor antagonist (IL-1ra)' axis regulates vaccine-mediated systemic inflammation in a host-specific manner. In human immune cells, RNA vaccines induce production of IL-1 cytokines, predominantly IL-1ß, which is dependent on both the RNA and lipid formulation. IL-1 in turn triggers the induction of the broad spectrum of pro-inflammatory cytokines (including IL-6). Unlike humans, murine leukocytes respond to RNA vaccines by upregulating anti-inflammatory IL-1ra relative to IL-1 (predominantly IL-1α), protecting mice from cytokine-mediated toxicities at >1,000-fold higher vaccine doses. Thus, the IL-1 pathway plays a key role in triggering RNA vaccine-associated innate signaling, an effect that was unexpectedly amplified by certain lipids used in vaccine formulations incorporating N1-methyl-pseudouridine-modified RNA to reduce activation of Toll-like receptor signaling.


Asunto(s)
Inflamación , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1 , Animales , COVID-19 , Inflamación/inmunología , Inflamación/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Interleucina-1/genética , Interleucina-1/inmunología , Lípidos , Ratones , ARN , Vacunas Sintéticas , Vacunas de ARNm/efectos adversos , Vacunas de ARNm/metabolismo
2.
Bioconjug Chem ; 35(5): 593-603, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592684

RESUMEN

Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.


Asunto(s)
Ferritinas , Humanos , Ferritinas/química , Ferritinas/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Sistemas de Liberación de Medicamentos
3.
Mol Cell Proteomics ; 20: 100108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34129938

RESUMEN

Advances in several key technologies, including MHC peptidomics, have helped fuel our understanding of basic immune regulatory mechanisms and the identification of T cell receptor targets for the development of immunotherapeutics. Isolating and accurately quantifying MHC-bound peptides from cells and tissues enables characterization of dynamic changes in the ligandome due to cellular perturbations. However, the current multistep analytical process is challenging, and improvements in throughput and reproducibility would enable rapid characterization of multiple conditions in parallel. Here, we describe a robust and quantitative method whereby peptides derived from MHC-I complexes from a variety of cell lines, including challenging adherent lines such as MC38, can be enriched in a semiautomated fashion on reusable, dry-storage, customized antibody cartridges. Using this method, a researcher, with very little hands-on time and in a single day, can perform up to 96 simultaneous enrichments at a similar level of quality as a manual workflow. TOMAHAQ (Triggered by Offset, Multiplexed, Accurate-mass, High-resolution, and Absolute Quantification), a targeted mass spectrometry technique that combines sample multiplexing and high sensitivity, was employed to characterize neoepitopes displayed on MHC-I by tumor cells and to quantitatively assess the influence of neoantigen expression and induced degradation on neoepitope presentation. This unique combination of robust semiautomated MHC-I peptide isolation and high-throughput multiplexed targeted quantitation allows for both the routine analysis of >4000 unique MHC-I peptides from 250 million cells using nontargeted methods, as well as quantitative sensitivity down to the low amol/µl level using TOMAHAQ targeted MS.


Asunto(s)
Epítopos , Antígenos de Histocompatibilidad Clase I/química , Proteómica/métodos , Animales , Línea Celular Tumoral , Escherichia coli/genética , Antígenos de Histocompatibilidad Clase I/genética , Espectrometría de Masas/métodos , Ratones , Proteínas Recombinantes , Flujo de Trabajo
4.
Anal Chem ; 94(42): 14593-14602, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36179215

RESUMEN

Immune monitoring in cancer immunotherapy involves screening CD8+ T-cell responses against neoantigens, the tumor-specific peptides presented by Major histocompatibility complex Class I (MHCI) on the cell surface. High-throughput immune monitoring requires methods to produce and characterize small quantities of thousands of MHCI-peptide complexes that may be tested for a patient's T-cell response. MHCI synthesis has been achieved using a photocleavable peptide that is exchanged by the neoantigen; however, assays that measure peptide exchange currently disassemble the complex prior to analysis─precluding direct molecular characterization. Here, we use native mass spectrometry (MS) to profile intact recombinant MHCI complexes and directly measure peptide exchange. Coupled with size-exclusion chromatography or capillary-zone electrophoresis, the assay identified all tested human leukocyte antigen (HLA)/peptide combinations in the nanomole to picomole range with minimal run time, reconciling the synthetic and analytical requirements of MHCI-peptide screening with the downstream T-cell assays. We further show that the assay can be "multiplexed" by measuring exchange of multiple peptides simultaneously and also enables calculation of Vc50, a measure of gas-phase stability. Additionally, MHCI complexes were fragmented by top-down sequencing, demonstrating that the intact complex, peptide sequence, and their binding affinity can be determined in a single analysis. This screening tool for MHCI-neoantigen complexes represents a step toward the application of state-of-the-art MS technology in translational settings. Not only is this assay already informing on the viability of immunotherapy in practice, the platform also holds promise to inspire novel MS readouts for increasingly complex biomolecules used in the diagnosis and treatment of disease.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Péptidos , Humanos , Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/química , Espectrometría de Masas , Antígenos HLA , Antígenos de Neoplasias
5.
Toxicol Pathol ; 49(3): 647-655, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33733956

RESUMEN

One strategy employed to prolong the ocular half-life of large molecule therapeutics is via covalent attachment to a carrier, resulting in an increase in size thereby slowing their clearance from the eye. Rabbit antigen-binding fragment conjugated to nanolipoprotein (RabFab-NLP) is a novel conjugate intended to prolong ocular half-life through an increase in hydrodynamic radius compared to Fab alone (∼12 vs ∼3 nm). Nanolipoproteins are mimetics of endogenous high-density lipoproteins and consist of lipids and apolipoproteins (ApoE422k), both biologically derived materials. The objective of this study was to evaluate the ocular toxicity and toxicokinetics of RabFab-NLP after a single intravitreal administration in New Zealand White rabbits. Serum toxicokinetic data suggested a significant increase in ocular residence time of RabFab-NLP compared to RabFab alone. Ophthalmic examinations showed that RabFab-NLP caused vitreous and lens opacities as early as day 3 and day 8 postdose, respectively, which persisted for the entire study duration to day 30. The RabFab-NLP-related microscopic findings were present in the lens, vitreous cavity, and/or optic nerve head. Based on the observed ocular toxicity, a single intravitreal dose of 1.3 mg/eye RabFab-NLP was not tolerated and caused vitreous opacity and cataracts in rabbit eyes.


Asunto(s)
Catarata , Cuerpo Vítreo , Animales , Catarata/inducido químicamente , Conejos , Retina
6.
J Immunol ; 202(2): 591-597, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30541879

RESUMEN

MHC proteins that present peptide ligands for recognition by TCR form nanoscale clusters on the cell membrane of APCs. How the extent of MHC clustering controls productive TCR engagement and TCR-mediated signaling has not been systematically studied. To evaluate the role of MHC clustering, we exploited nanoscale discoidal membrane mimetics (nanolipoprotein particles) to capture and present peptide-MHC (pMHC) ligands at various densities. We examined the binding of these model membrane clusters to the surface of live human CD8+ T cells and the subsequent triggering of intracellular signaling. The data demonstrate that the proximity of pMHC ligands, high association rate of CD8-MHC interactions, and relatively long lifetime of cognate TCR-pMHC complexes emerge as essential parameters, explaining the significance of MHC clustering. Rapid rebinding of CD8 to MHC suggests a dual role of CD8 in facilitating the T cells' hunt for a rare foreign pMHC ligand and the induction of rapid T cell response. Thus, our findings provide a new understanding of how MHC clustering influences multivalent interactions of pMHC ligands with CD8 and TCR on live T cells that regulate Ag recognition, kinetics of intracellular signaling, and the selectivity and efficiency of T cell responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Sitios de Unión , Biomimética , Humanos , Cinética , Activación de Linfocitos , Péptidos/química , Unión Proteica
7.
Bioconjug Chem ; 31(8): 1995-2007, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32701261

RESUMEN

Nanolipoprotein particles (NLPs), a lipid bilayer-based nanoparticle platform, have recently been developed for in vivo delivery of a variety of molecules of therapeutic interest, but their potential to deliver Fabs with valencies that exceed those of current multivalent formats has not yet been evaluated. Here we describe the development, optimization, and characterization of Fab-NLP conjugates. NLPs were generated with maleimide reactive lipids for conjugation to a Fab with a C-terminal cysteine. Of note, maleimide reactive lipids were shown to conjugate to the apolipoprotein when the NLPs were assembled at pH 7.4. However, this undesirable reaction was not observed when assembled at pH 6. Site-specific Fab conjugation conditions were then optimized, and conjugation of up to 30 Fab per NLP was demonstrated. Interestingly, although conjugation of higher numbers of Fabs had a significant impact on NLP molecular weight, only a minimal impact on NLP hydrodynamic radius was observed, indicating that particle size is largely dictated by the discoidal shape of the NLP. Fab-NLP viscosity and its stability upon lyophilization were also evaluated as an assessment of the manufacturability of the Fab-NLP. Significantly higher Fab concentrations were achieved with the Fab-NLP conjugates relative to another multivalent format (Fab-PEG conjugates). Fab conjugation to the NLP was also not found to have an impact on Fab activity in both an inhibitory and agonist setting. Finally, the stability of the Fab-NLP conjugates was evaluated in 50% serum and Fab-NLPs demonstrated increased stability, with >63% of Fab-NLP remaining intact after 24 h at Fab per particle ratios of 7 or greater. Our findings suggest Fab-NLPs are a promising platform for the targeted delivery of Fabs in a multivalent format and are compatible with established manufacturing processes.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/química , Lipoproteínas/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Fragmentos Fab de Inmunoglobulinas/farmacología , Maleimidas/química , Reología
8.
J Biol Chem ; 292(36): 15121-15132, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739800

RESUMEN

Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/inmunología , Chlamydia muridarum/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Bases , Sistema Libre de Células , Infecciones por Chlamydia/microbiología , Femenino , Ratones , Ratones Endogámicos BALB C
9.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38095631

RESUMEN

Toll-like receptors 7 (TLR7) and 8 (TLR8) each sense single-stranded RNA (ssRNA), but their activation results in different immune activation profiles. Attempts to selectively target either TLR7 or TLR8 have been hindered by their high degree of homology. However, recent studies revealed that TLR7 and TLR8 bind different ligands resulting from the processing of ssRNA by endolysosomal RNases. We demonstrate that by introducing precise 2' sugar-modified bases into oligoribonucleotides (ORNs) containing known TLR7 and TLR8 binding motifs, we could prevent RNase-mediated degradation into the monomeric uridine required for TLR8 activation while preserving TLR7 activation. Furthermore, a novel, optimized protocol for CRISPR-Cas9 knockout in primary human plasmacytoid dendritic cells showed that TLR7 activation is dependent on RNase processing of ORNs and revealed a previously undescribed role for RNase 6 in degrading ORNs into TLR ligands. Finally, 2' sugar-modified ORNs demonstrated robust innate immune activation in mice. Altogether, we identified a strategy for creating tunable TLR7-selective agonists.


Asunto(s)
Ribonucleasas , Receptor Toll-Like 7 , Humanos , Ratones , Animales , Receptor Toll-Like 7/genética , Nucleótidos , Receptor Toll-Like 8/genética , Ligandos , ARN , Adyuvantes Inmunológicos , Azúcares
10.
J Am Chem Soc ; 135(6): 2044-7, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23331082

RESUMEN

Subunit antigen-based vaccines can provide a number of important benefits over traditional vaccine candidates, such as overall safety. However, because of the inherently low immunogenicity of these antigens, methods for colocalized delivery of antigen and immunostimulatory molecules (i.e., adjuvants) are needed. Here we report a robust nanolipoprotein particle (NLP)-based vaccine delivery platform that facilitates the codelivery of both subunit antigens and adjuvants. Ni-chelating NLPs (NiNLPs) were assembled to incorporate the amphipathic adjuvants monophosphoryl lipid A and cholesterol-modified CpG oligodeoxynucleotides, which can bind His-tagged protein antigens. Colocalization of antigen and adjuvant delivery using the NiNLP platform resulted in elevated antibody production against His-tagged influenza hemagglutinin 5 and Yersinia pestis LcrV antigens. Antibody titers in mice immunized with the adjuvanted NLPs were 5-10 times higher than those observed with coadministration formulations and nonadjuvanted NiNLPs. Colocalized delivery of adjuvant and antigen provides significantly greater immune stimulation in mice than coadministered formulations.


Asunto(s)
Adyuvantes Inmunológicos/química , Antígenos Bacterianos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Lipoproteínas/química , Nanopartículas/química , Proteínas Citotóxicas Formadoras de Poros/inmunología , Vacunas/química , Animales , Antígenos Bacterianos/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Lipoproteínas/inmunología , Ratones , Níquel/química , Níquel/inmunología , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Vacunas/inmunología
11.
Nat Biotechnol ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857725

RESUMEN

The broad application of precision cancer immunotherapies is limited by the number of validated neoepitopes that are common among patients or tumor types. To expand the known repertoire of shared neoantigen-human leukocyte antigen (HLA) complexes, we developed a high-throughput platform that coupled an in vitro peptide-HLA binding assay with engineered cellular models expressing individual HLA alleles in combination with a concatenated transgene harboring 47 common cancer neoantigens. From more than 24,000 possible neoepitope-HLA combinations, biochemical and computational assessment yielded 844 unique candidates, of which 86 were verified after immunoprecipitation mass spectrometry analyses of engineered, monoallelic cell lines. To evaluate the potential for immunogenicity, we identified T cell receptors that recognized select neoepitope-HLA pairs and elicited a response after introduction into human T cells. These cellular systems and our data on therapeutically relevant neoepitopes in their HLA contexts will aid researchers studying antigen processing as well as neoepitope targeting therapies.

12.
Front Immunol ; 13: 961105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159875

RESUMEN

Most patients with advanced non-small cell lung cancer (NSCLC) do not achieve a durable remission after treatment with immune checkpoint inhibitors. Here we report the clinical history of an exceptional responder to radiation and anti-program death-ligand 1 (PD-L1) monoclonal antibody, atezolizumab, for metastatic NSCLC who remains in a complete remission more than 8 years after treatment. Sequencing of the patient's T cell repertoire from a metastatic lesion and the blood before and after anti-PD-L1 treatment revealed oligoclonal T cell expansion. Characterization of the dominant T cell clone, which comprised 10% of all clones and increased 10-fold in the blood post-treatment, revealed an activated CD8+ phenotype and reactivity against 4 HLA-A2 restricted neopeptides but not viral or wild-type human peptides, suggesting tumor reactivity. We hypothesize that the patient's exceptional response to anti-PD-L1 therapy may have been achieved by increased tumor immunogenicity promoted by pre-treatment radiation therapy as well as long-term persistence of oligoclonal expanded circulating T cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Antígeno HLA-A2 , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Linfocitos T
13.
Biochim Biophys Acta ; 1798(7): 1357-67, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19945421

RESUMEN

The objective of this paper is to review phase behavior and shape characterization of cerebroside-rich domains in binary and ternary lipid bilayers, as obtained by microscopy techniques. These lipid mixtures provide a format to examine molecular (e.g. headgroup, tail unsaturation, and tail hydroxylation) and thermodynamic (e.g. temperature and mole percentages) factors that determine phase behavior, molecular partitioning, crystal/atomic scale structure, and microstructure/shape (particularly of phase-separated domains). Microscopy can provide excellent spatial (often with high resolution) characterization of cerebroside-rich domains (and their surroundings) to identify, describe or infer with high certainty these characteristics. In the introduction to this review we review briefly the molecular structure, phase behavior, and intermolecular interactions of cerebrosides, in comparison to ceramides and sphingomyelins and in some binary and biological systems. The bulk of the review is then devoted to microscopy investigations of cerebroside-rich domain microstructure and shape dynamics in binary and ternary (one component is cholesterol) systems. Quantitative and/or high-resolution microscopy techniques have been used to interrogate cerebroside-rich domains such as freeze-fracture electron microscopy, atomic force microscopy, imaging elipsometry, two-photon fluorescence microscopy, and LAURDAN generalized polarization in addition to the laboratory workhorse technique of epifluorescence microscopy that allows a quick often qualitative assessment of microstructure and dynamics. We particularly focus on the information these microscopy investigations have revealed with respect to phase behavior, cholesterol partitioning, domain shape, and determinants of domain shape.


Asunto(s)
Cerebrósidos/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Microdominios de Membrana/ultraestructura , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Técnica de Fractura por Congelación , Lauratos/química , Microscopía Electrónica de Rastreo/métodos , Transición de Fase
14.
Protein Sci ; 30(6): 1169-1183, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33840137

RESUMEN

Despite the need to monitor the impact of Cancer Immunotherapy (CI)/Immuno-Oncology (IO) therapeutics on neoantigen-specific T-cell responses, very few clinical programs incorporate this aspect of immune monitoring due to the challenges in high-throughput (HTP) generation of Major Histocompatibility Complex Class I (MHCI) tetramers across a wide range of HLA alleles. This limitation was recently addressed through the development of MHCI complexes with peptides containing a nonnatural UV cleavable amino acid (conditional MHCI ligands) that enabled HTP peptide exchange upon UV exposure. Despite this advancement, the number of alleles with known conditional MHCI ligands is limited. We developed a novel workflow to enable identification and validation of conditional MHCI ligands across a range of HLA alleles. First, known peptide binders were screened via an enzyme-linked immunosorbent assay (ELISA) assay. Conditional MHCI ligands were designed using the highest-performing peptides and evaluated in the same ELISA assay. The top performers were then selected for scale-up production. Next-generation analytical techniques (LC/MS, SEC-MALS, and 2D LC/MS) were used to characterize the complex after refolding with the conditional MHCI ligands. Finally, we used 2D LC/MS to evaluate peptide exchange with these scaled-up conditional MHCI complexes after UV exposure with validated peptide binders. Successful peptide exchange was observed for all conditional MHCI ligands upon UV exposure, validating our screening approach. This approach has the potential to be broadly applied and enable HTP generation of MHCI monomers and tetramers across a wider range of HLA alleles, which could be critical to enabling the use of MHCI tetramers to monitor neoantigen-specific T-cells in the clinic.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Péptidos/química , Humanos , Ligandos
15.
Nanoscale Adv ; 3(13): 3929-3941, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36133017

RESUMEN

Nanolipoprotein particles (NLPs) have been evaluated as an in vivo delivery vehicle for a variety of molecules of therapeutic interest. However, delivery of peptide-like drugs in combination with therapeutic Fabs has not yet been evaluated. In this study, we describe the development and characterization of cystine-knot peptide (CKP)-containing NLPs and Fab-CKP-NLP conjugates. CKPs were incorporated into NLPs using a self-assembly strategy. The trypsin inhibitor EETI-II, a model CKP, was produced with a C16 fatty acyl chain to enable incorporation of the CKP into the lipid bilayer core during NLP assembly. The CKP-NLP retained trypsin inhibitory function although the overall activity was reduced by ∼5 fold compared to free CKP, which was presumably due to steric hindrance. The NLP platform was also shown to accommodate up to ∼60 CKP molecules. Moreover, the stability of the CKP-NLP was comparable to the NLP control, displaying a relatively short half-life (∼1 h) in 50% serum at 37 °C. Therapeutic Fabs were also loaded onto the CKP-NLP by introducing thiol-reactive lipids that would undergo a covalent reaction with the Fab. Using this strategy, Fab loading could be reliably controlled from 1-50 Fabs per CKP-NLP and was found to be independent of CKP density. Surprisingly, Fab incorporation into CKP-NLPs led to a substantial improvement in NLP stability (half-life > 24 h) at 37 °C; also, there was no reduction in CKP activity in the Fab-CKP-NLP conjugates compared to CKP-NLPs. Altogether, our data demonstrate the potential of NLPs as a promising platform for the targeted or multidrug delivery of peptide-based drug candidates in combination with Fabs.

16.
Biochim Biophys Acta ; 1788(1): 254-66, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18822269

RESUMEN

We review structure and dynamic measurements of biomembranes by atomic force microscopy (AFM). We focus mainly on studies involving supported lipid bilayers (SLBs), particularly formation by vesicle rupture on flat and corrugated surfaces, nucleation and growth of domains in phase-separated systems, anesthetic-lipid interactions, and protein/peptide interactions in multicomponent systems. We show that carefully designed experiments along with real-time AFM imaging with superior lateral and z resolution (0.1 nm) have revealed quantitative details of the mechanisms and factors controlling vesicle rupture, domain shape and size, phase transformations, and some model biological interactions. The AFM tip can also be used as a mechanical transducer and incorporated in electrochemical measurements of membrane components; therefore, we touch on these important applications in both model and cell membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Membranas Artificiales , Microscopía de Fuerza Atómica/métodos , Animales , Membrana Celular/química , Humanos , Membrana Dobles de Lípidos/síntesis química , Modelos Biológicos , Termodinámica , Levaduras/química
17.
Biochim Biophys Acta ; 1788(3): 724-31, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19109924

RESUMEN

To better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.0 nm as measured by AFM. Streptavidin binding to biotinylated bR confirmed that the original 1.0 nm height increase corresponds to br-NLP incorporation. AFM and ion mobility spectrometry (IMS) measurements suggest that NLP size did not vary around a single mean but instead there were several subpopulations, which were separated by discrete diameters. Interestingly, when bR was present during assembly the diameter distribution was shifted to larger particles and the larger particles had a greater likelihood of containing bR than smaller particles, suggesting that membrane proteins alter the mechanism of NLP assembly.


Asunto(s)
Bacteriorodopsinas/química , Lipoproteínas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica , Nanoestructuras , Tamaño de la Partícula , Espectrofotometría Ultravioleta
18.
Bioconjug Chem ; 21(7): 1321-30, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20586461

RESUMEN

Nanolipoprotein particles (NLPs) are discoidal self-assembling membrane mimetics that have been primarily used as a platform for the solubilization and stabilization of membrane proteins. Nickel-chelating nanolipoprotein particles (NiNLPs) containing nickel-chelating lipids (Ni-lipid) for the targeted immobilization of His-tagged proteins hold promise as carriers of hydrophilic biological molecules for a range of applications. The effect of protein loading (i.e., the number of proteins bound per NiNLP) and Ni-lipid content on the time scales and kinetics of binding are important to various applications such as vaccine development, diagnostic imaging, and drug delivery. We have immobilized hexa-His-tagged LsrB, a Yersinia pestis transport protein, onto NiNLPs to examine the effect of protein binding stoichiometry and Ni-lipid content on the time scales and kinetics of protein binding by surface plasmon resonance (SPR). Data indicate that the dissociation half-time increases with Ni-lipid content up to a molar concentration of 35% and decreases as the number of bound protein per NiNLP increases. These findings indicate that the kinetics of protein binding are highly dependent on both the number of bound protein per NiNLP and Ni-lipid content.


Asunto(s)
Proteínas Bacterianas/química , Quelantes/química , Histidina/química , Lipoproteínas/química , Nanopartículas/química , Níquel/química , Proteínas Bacterianas/metabolismo , Quelantes/metabolismo , Histidina/metabolismo , Cinética , Lípidos/química , Lipoproteínas/metabolismo , Níquel/metabolismo , Tamaño de la Partícula , Unión Proteica , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie , Yersinia pestis/química
19.
Bioconjug Chem ; 21(6): 1018-22, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20509624

RESUMEN

Subunit antigens are attractive candidates for vaccine development, as they are safe, cost-effective, and rapidly produced. Nevertheless, subunit antigens often need to be adjuvanted and/or formulated to produce products with acceptable potency and efficacy. Here, we describe a simple method for improving the potency and efficacy of a recombinant subunit antigen by its immobilization on nickel-chelating nanolipoprotein particles (NiNLPs). NiNLPs are membrane mimetic nanoparticles that provide a delivery and presentation platform amenable to binding any recombinant subunit immunogens featuring a polyhistidine tag. A His-tagged, soluble truncated form of the West Nile virus (WNV) envelope protein (trE-His) was immobilized on NiNLPs. Single inoculations of the NiNLP-trE-His produced superior anti-WNV immune responses and provided significantly improved protection against a live WNV challenge compared to mice inoculated with trE-His alone. These results have broad implications in vaccine development and optimization, as NiNLP technology is well-suited to many types of vaccines, providing a universal platform for enhancing the potency and efficacy of recombinant subunit immunogens.


Asunto(s)
Quelantes/química , Encefalitis Viral/prevención & control , Lipoproteínas/química , Nanopartículas/química , Níquel/química , Vacunas de Subunidad/inmunología , Fiebre del Nilo Occidental/prevención & control , Vacunas contra el Virus del Nilo Occidental/inmunología , Animales , Quelantes/administración & dosificación , Encefalitis Viral/inmunología , Ensayo de Inmunoadsorción Enzimática , Ratones , Factores de Tiempo , Vacunas de Subunidad/química , Proteínas del Envoltorio Viral/inmunología , Fiebre del Nilo Occidental/inmunología , Vacunas contra el Virus del Nilo Occidental/administración & dosificación , Vacunas contra el Virus del Nilo Occidental/química
20.
Mol Cell Proteomics ; 7(11): 2246-53, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18603642

RESUMEN

Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Delta1-49 apolipoprotein A-I fragment (Delta49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR --> M transition. Importantly the functional bR was solubilized in discoidal bR.NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Delta49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.


Asunto(s)
Apolipoproteína A-I/química , Proteínas de la Membrana/química , Apolipoproteína A-I/genética , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Secuencia de Bases , Cartilla de ADN/genética , Halobacterium salinarum/genética , Proteínas de la Membrana/genética , Microscopía de Fuerza Atómica , Nanopartículas/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Proteómica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA