Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37847145

RESUMEN

Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.


Asunto(s)
Proteínas de Caenorhabditis elegans , Insulina , Embarazo , Femenino , Humanos , Animales , Ratones , Insulina/metabolismo , Pez Cebra/metabolismo , Transducción de Señal , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo
2.
Semin Cell Dev Biol ; 138: 128-141, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35440411

RESUMEN

Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Inmunidad Innata , Transducción de Señal
3.
Dev Biol ; 512: 35-43, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38710381

RESUMEN

The larval stage of the Drosophila melanogaster life cycle is characterized by rapid growth and nutrient storage that occur over three instar stages separated by molts. In the third instar, the steroid hormone ecdysone drives key developmental processes and behaviors that occur in a temporally-controlled sequence and prepare the animal to undergo metamorphosis. Accurately staging Drosophila larvae within the final third instar is critical due to the rapid developmental progress at this stage, but it is challenging because the rate of development varies widely across a population of animals even if eggs are laid within a short period of time. Moreover, many methods to stage third instar larvae are cumbersome, and inherent variability in the rate of development confounds some of these approaches. Here we demonstrate the usefulness of the Sgs3-GFP transgene, a fusion of the Salivary gland secretion 3 (Sgs3) and GFP proteins, for staging third instar larvae. Sgs3-GFP is expressed in the salivary glands in an ecdysone-dependent manner from the midpoint of the third instar, and its expression pattern changes reproducibly as larvae progress through the third instar. We show that Sgs3-GFP can easily be incorporated into experiments, that it allows collection of developmentally-equivalent individuals from a mixed population of larvae, and that its use enables precise assessment of changing levels of hormones, metabolites, and gene expression during the second half of the third instar.


Asunto(s)
Drosophila melanogaster , Ecdisona , Proteínas Fluorescentes Verdes , Larva , Fenotipo , Glándulas Salivales , Animales , Larva/metabolismo , Larva/genética , Glándulas Salivales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Genes Reporteros , Regulación del Desarrollo de la Expresión Génica/genética , Animales Modificados Genéticamente , Metamorfosis Biológica/genética
4.
PLoS Biol ; 19(10): e3001438, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34665798

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.3000721.].

5.
PLoS Biol ; 18(5): e3000721, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32463838

RESUMEN

Dietary nutrients provide macromolecules necessary for organism growth and development. In response to animal feeding, evolutionarily conserved growth signaling pathways are activated, leading to increased rates of cell proliferation and tissue growth. It remains unclear how different cell types within developing tissues coordinate growth in response to dietary nutrients and whether coordinated growth of different cell types is necessary for proper tissue function. Using the early Drosophila larval brain, we asked whether nutrient-dependent growth of neural stem cells (neuroblasts), glia, and trachea is coordinated and whether coordinated growth among these major brain cell types is required for neural development. It is known that in response to dietary nutrients and PI3-kinase activation, brain and ventral nerve cord neuroblasts reactivate from quiescence and ventral nerve cord glia expand their membranes. Here, we assay growth in a cell-type specific manner at short time intervals in the brain and determine that growth is coordinated among different cell types and that coordinated growth is mediated in part through activation of PI3-kinase signaling. Of the 7 Drosophila insulin-like peptides (Dilps), we find that Dilp-2 is required for PI3-kinase activation and growth coordination between neuroblasts and glia in the brain. Dilp-2 induces brain cortex glia to initiate membrane growth and make first contact with quiescent neuroblasts. Once reactivated, neuroblasts promote cortex glia growth to ultimately form a selective membrane barrier. Our results highlight the importance of bidirectional growth signaling between neural stem cells and surrounding cell types in the brain in response to nutrition and demonstrate how coordinated growth among different cell types drives tissue morphogenesis and function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Drosophila/enzimología , Ingestión de Alimentos , Activación Enzimática , Larva/crecimiento & desarrollo , Morfogénesis , Transducción de Señal , Nicho de Células Madre
6.
PLoS Genet ; 16(11): e1009192, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33227003

RESUMEN

During infection, cellular resources are allocated toward the metabolically-demanding processes of synthesizing and secreting effector proteins that neutralize and kill invading pathogens. In Drosophila, these effectors are antimicrobial peptides (AMPs) that are produced in the fat body, an organ that also serves as a major lipid storage depot. Here we asked how activation of Toll signaling in the larval fat body perturbs lipid homeostasis to understand how cells meet the metabolic demands of the immune response. We find that genetic or physiological activation of fat body Toll signaling leads to a tissue-autonomous reduction in triglyceride storage that is paralleled by decreased transcript levels of the DGAT homolog midway, which carries out the final step of triglyceride synthesis. In contrast, Kennedy pathway enzymes that synthesize membrane phospholipids are induced. Mass spectrometry analysis revealed elevated levels of major phosphatidylcholine and phosphatidylethanolamine species in fat bodies with active Toll signaling. The ER stress mediator Xbp1 contributed to the Toll-dependent induction of Kennedy pathway enzymes, which was blunted by deleting AMP genes, thereby reducing secretory demand elicited by Toll activation. Consistent with ER stress induction, ER volume is expanded in fat body cells with active Toll signaling, as determined by transmission electron microscopy. A major functional consequence of reduced Kennedy pathway induction is an impaired immune response to bacterial infection. Our results establish that Toll signaling induces a shift in anabolic lipid metabolism to favor phospholipid synthesis and ER expansion that may serve the immediate demand for AMP synthesis and secretion but with the long-term consequence of insufficient nutrient storage.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Infecciones por Bacterias Grampositivas/inmunología , Inmunidad Innata , Metabolismo de los Lípidos/inmunología , Animales , Animales Modificados Genéticamente , Péptidos Catiónicos Antimicrobianos/genética , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Proteínas de Unión al ADN/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/inmunología , Enterococcus faecalis/inmunología , Cuerpo Adiposo/enzimología , Cuerpo Adiposo/inmunología , Femenino , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Larva/enzimología , Larva/inmunología , Metabolismo de los Lípidos/genética , Masculino , Fosfolípidos/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo , Triglicéridos/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(49): 20853-8, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19861550

RESUMEN

Innate immunity is the primary and most ancient defense against infection. Although critical to survival, coordinating protection against a foreign organism is energetically costly, creating the need to reallocate substrates from nonessential functions, such as growth and nutrient storage. However, the mechanism by which infection or inflammation leads to a reduction in energy utilization by these dispensable processes is not well understood. Here, we demonstrate that activation of the Toll signaling pathway selectively in the fat body, the major immune and lipid storage organ of the fruit fly, Drosophila melanogaster, leads to both induction of immunity and reallocation of resources. Toll signaling in the fat body suppresses insulin signaling both within these cells and non-autonomously throughout the organism, leading to a decrease in both nutrient stores and growth. These data suggest that communication between these two regulatory systems evolved as a means to divert energy in times of need from organismal growth to the acute requirement of combating infection.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/inmunología , Alimentos , Inmunidad/inmunología , Insulina/metabolismo , Transducción de Señal/inmunología , Animales , Infecciones Bacterianas/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/microbiología , Cuerpo Adiposo/citología , Cuerpo Adiposo/inmunología , Femenino , Factores de Transcripción Forkhead/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Receptores Toll-Like/inmunología
8.
Dev Biol ; 344(1): 293-303, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20478298

RESUMEN

The larval phase of the Drosophila life cycle is characterized by constant food intake, resulting in a two hundred-fold increase in mass over four days. Here we show that the conserved energy sensor AMPK is essential for nutrient intake in Drosophila. Mutants lacking dAMPKalpha are small, with low triglyceride levels, small fat body cells and early pupal lethality. Using mosaic analysis, we find that dAMPKalpha functions as a nonautonomous regulator of cell growth. Nutrient absorption is impaired in dAMPKalpha mutants, and this defect stems not from altered gut epithelial cell polarity but from impaired peristaltic activity. Expression of a wild-type dAMPKalpha transgene or an activated version of the AMPK target myosin regulatory light chain (MRLC) in the dAMPKalpha mutant visceral musculature restores gut function and growth. These data suggest strongly that AMPK regulates visceral smooth muscle function through phosphorylation of MRLC. Furthermore, our data show that in Drosophila, AMPK performs an essential cell-nonautonomous function, serving the needs of the organism by promoting activity of the visceral musculature and, consequently, nutrient intake.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/metabolismo , Músculos/metabolismo , Animales , Cruzamientos Genéticos , Glucosa/metabolismo , Intestinos/embriología , Modelos Biológicos , Músculo Liso/metabolismo , Músculos/embriología , Peristaltismo , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes , Triglicéridos/metabolismo
9.
Sci Rep ; 10(1): 18166, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097799

RESUMEN

Stress hyperglycemia and insulin resistance are evolutionarily conserved metabolic adaptations to severe injury including major trauma, burns, or hemorrhagic shock (HS). In response to injury, the neuroendocrine system increases secretion of counterregulatory hormones that promote rapid mobilization of nutrient stores, impair insulin action, and ultimately cause hyperglycemia, a condition known to impair recovery from injury in the clinical setting. We investigated the contributions of adipocyte lipolysis to the metabolic response to acute stress. Both surgical injury with HS and counterregulatory hormone (epinephrine) infusion profoundly stimulated adipocyte lipolysis and simultaneously triggered insulin resistance and hyperglycemia. When lipolysis was inhibited, the stress-induced insulin resistance and hyperglycemia were largely abolished demonstrating an essential requirement for adipocyte lipolysis in promoting stress-induced insulin resistance. Interestingly, circulating non-esterified fatty acid levels did not increase with lipolysis or correlate with insulin resistance during acute stress. Instead, we show that impaired insulin sensitivity correlated with circulating levels of the adipokine resistin in a lipolysis-dependent manner. Our findings demonstrate the central importance of adipocyte lipolysis in the metabolic response to injury. This insight suggests new approaches to prevent insulin resistance and stress hyperglycemia in trauma and surgery patients and thereby improve outcomes.


Asunto(s)
Adipocitos/metabolismo , Hiperglucemia/metabolismo , Lipólisis/fisiología , Choque Hemorrágico/complicaciones , Herida Quirúrgica/complicaciones , Animales , Modelos Animales de Enfermedad , Epinefrina/administración & dosificación , Epinefrina/metabolismo , Femenino , Humanos , Hiperglucemia/sangre , Hiperglucemia/etiología , Hiperglucemia/fisiopatología , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Lipasa/genética , Lipasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Resistina/sangre , Resistina/metabolismo , Choque Hemorrágico/sangre , Choque Hemorrágico/metabolismo , Choque Hemorrágico/fisiopatología , Herida Quirúrgica/sangre , Herida Quirúrgica/metabolismo , Herida Quirúrgica/fisiopatología
10.
Cell Rep ; 28(6): 1439-1446.e5, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390559

RESUMEN

Chronic enteropathogen infection in early childhood reduces circulating insulin-like growth factor 1 (IGF1) levels and restricts growth. Pathogen-derived molecules activate host Toll-like receptors to initiate the immune response, but whether this pathway contributes to growth inhibition is unclear. In Drosophila, activation of Toll receptors in larval fat body suppresses whole-animal growth. Here, using a transcriptomic approach, we identify Drosophila insulin-like peptide 6 (Dilp6), a fat-body-derived IGF1 ortholog, as a selective target of Toll signaling induced by infection or genetic activation of the pathway. Using a tagged allele that we generated to measure endogenous Dilp6, we find a marked reduction in circulating hormone levels. Restoring Dilp6 expression in fat body rescues growth in animals with active Toll signaling. Our results establish that Toll signaling reduces growth by inducing hormone insufficiency, implying a mechanistic link between innate immune signaling and endocrine regulation of growth.


Asunto(s)
Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/metabolismo , Somatomedinas/metabolismo , Animales , Drosophila , Transducción de Señal
11.
Cell Rep ; 22(10): 2550-2556, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514084

RESUMEN

In obese adipose tissue, Toll-like receptor signaling in macrophages leads to insulin resistance in adipocytes. Similarly, Toll signaling in the Drosophila larval fat body blocks insulin-dependent growth and nutrient storage. We find that Toll acts cell autonomously to block growth but not PI(3,4,5)P3 production in fat body cells expressing constitutively active PI3K. Fat body Toll signaling blocks whole-animal growth in rictor mutants lacking TORC2 activity, but not in larvae lacking Pdk1. Phosphorylation of Akt on the Pdk1 site, Thr342, is significantly reduced by Toll signaling, and expression of mutant AktT342D rescues cell and animal growth, nutrient storage, and viability in animals with active Toll signaling. Altogether, these data show that innate immune signaling blocks insulin signaling at a more distal level than previously appreciated, and they suggest that manipulations affecting the Pdk1 arm of the pathway may have profound effects on insulin sensitivity in inflamed tissues.


Asunto(s)
Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Inmunidad Innata , Insulina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Activación Enzimática , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fenotipo , Fosforilación , Fosfotreonina/metabolismo , Receptores Toll-Like/metabolismo
12.
J Vis Exp ; (112)2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27404635

RESUMEN

The power of Drosophila genetics is increasingly being applied to questions of hormone signaling and metabolism and to the development of models of human disease in this organism. Sensitive methods for measurements of parameters such as metabolic rates are needed to drive the understanding of physiology and disease in small animals such as the fruit fly. The method described here assesses fuel oxidation in small numbers of adult flies fed food containing trace amounts of (14)C-labeled substrates such as glucose or fatty acid. After the feeding period and any additional experimental manipulations, flies are transferred to short tubes capped with mesh, which are then placed in glass vials containing KOH-saturated filter paper that traps exhaled, radiolabeled CO2 generated from oxidation of radiolabeled substrates as potassium bicarbonate, KHCO3. This radiolabeled bicarbonate is measured by scintillation counting. This is a quantitative, reproducible, and simple approach for the study of fuel oxidation. The use of radiolabeled glucose, fatty acids, or amino acids allows determination of the contribution of these different fuel sources to energy metabolism under different conditions such as feeding and fasting and in different genetic backgrounds. This complements other approaches used to measure in vivo energy metabolism and should further the understanding of metabolic regulation.


Asunto(s)
Dióxido de Carbono/análisis , Animales , Drosophila melanogaster , Metabolismo Energético , Ácidos Grasos , Oxidación-Reducción
13.
Mol Endocrinol ; 18(4): 941-52, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14726490

RESUMEN

The importance of steroidogenic factor-1 (SF-1) gene dosage in endocrine function is evidenced by phenotypes associated with the heterozygous state in mice and humans. Here we examined mechanisms underlying SF-1 haploinsufficiency and found a striking reduction (12-fold) in SF-1 heterozygous (+/-) adrenocortical size at embryonic day (E) 12. Loss of one SF-1 allele led to a selective decrease in adrenal precursors within the adrenogonadal primordium at E10.0, without affecting the number of gonadal precursors, as marked by GATA-4. Beginning at E13.5, increased cell proliferation in SF-1 +/- adrenals allows these organs to approach but not attain a normal size. Remarkably, neural crest-derived adrenomedullary precursors migrated normally in SF-1 +/- and null embryos. However, later in development, medullary growth was compromised in both genotypes. Despite the small adrenal size in SF-1heterozygotes, an unexpected elevation in steroidogenic capacity per cell was observed in primary adult adrenocortical SF-1 +/- cells compared with wild-type cells. Elevated cellular steroid output is consistent with the up-regulation of some SF-1 target genes in SF-1 +/- adrenals and may partially be due to an observed increase in nerve growth factor-induced-B. Our findings underscore the need for full SF-1 gene dosage early in adrenal development, but not in the adult adrenal, where compensatory mechanisms restore near normal function.


Asunto(s)
Glándulas Suprarrenales/embriología , Glándulas Suprarrenales/fisiología , Proteínas de Unión al ADN/genética , Dosificación de Gen , Factores de Transcripción/genética , Animales , División Celular/fisiología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Fushi Tarazu , Heterocigoto , Ratones , Factores de Empalme de ARN , Factor Esteroidogénico 1 , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
14.
Ann N Y Acad Sci ; 995: 59-72, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12814939

RESUMEN

The adrenal gland provides a model system for the study of tissue remodeling in endocrine physiology. For example, proper adrenal development requires proliferation of the adrenogonadal primordia, separation of adrenal and gonadal precursors, and cell migration that unites the adrenal cortex and adrenal medulla. In the adult, normal adrenal function is assured by the adrenal gland's unique capacity for growth in response to both tissue injury and physiological demand. Identification of the molecular and genetic programs underlying tissue remodeling in the adrenal is important for understanding basic aspects of development and regeneration, as well as adrenal disease. Here, we will highlight the roles that nuclear receptors and pituitary hormones play in regulating fetal adrenal development and adult adrenal growth. In addition, we will review the most current data on how extracellular signaling pathways are coupled to the function of these important regulators of adrenal development and function.


Asunto(s)
Glándulas Suprarrenales/embriología , Glándulas Suprarrenales/fisiología , Proteínas Represoras , Corteza Suprarrenal/metabolismo , Hormona Adrenocorticotrópica/fisiología , Adulto , Animales , Receptor Nuclear Huérfano DAX-1 , Proteínas de Unión al ADN/fisiología , Factor 2 de Crecimiento de Fibroblastos/fisiología , Factores de Transcripción Fushi Tarazu , Proteínas de Homeodominio , Humanos , Ratones , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Ácido Retinoico/fisiología , Regeneración , Transducción de Señal , Factor Esteroidogénico 1 , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA