RESUMEN
BACKGROUND: Muscle wasting is a hallmark of many chronic conditions but also of aging and results in a progressive functional decline leading ultimately to disability. Androgens, such as testosterone were proposed as therapy to counteract muscle atrophy. However, this treatment is associated with potential cardiovascular and prostate cancer risks and therefore not acceptable for long-term treatment. Selective Androgen receptor modulators (SARM) are androgen receptor ligands that induce muscle anabolism while having reduced effects in reproductive tissues. Therefore, they represent an alternative to testosterone therapy. Our objective was to demonstrate the activity of SARM molecule (GLPG0492) on a immobilization muscle atrophy mouse model as compared to testosterone propionate (TP) and to identify putative biomarkers in the plasma compartment that might be related to muscle function and potentially translated into the clinical space. METHODS: GLPG0492, a non-steroidal SARM, was evaluated and compared to TP in a mouse model of hindlimb immobilization. RESULTS: GLPG0492 treatment partially prevents immobilization-induced muscle atrophy with a trend to promote muscle fiber hypertrophy in a dose-dependent manner. Interestingly, GLPG0492 was found as efficacious as TP at reducing muscle loss while sparing reproductive tissues. Furthermore, gene expression studies performed on tibialis samples revealed that both GLPG0492 and TP were slowing down muscle loss by negatively interfering with major signaling pathways controlling muscle mass homeostasis. Finally, metabolomic profiling experiments using 1H-NMR led to the identification of a plasma GLPG0492 signature linked to the modulation of cellular bioenergetic processes. CONCLUSIONS: Taken together, these results unveil the potential of GLPG0492, a non-steroidal SARM, as treatment for, at least, musculo-skeletal atrophy consecutive to coma, paralysis, or limb immobilization.
Asunto(s)
Andrógenos/farmacología , Suspensión Trasera/fisiología , Hidantoínas/farmacología , Modelos Animales , Receptores Androgénicos/fisiología , Andrógenos/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Suspensión Trasera/métodos , Hidantoínas/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/fisiopatologíaRESUMEN
Tyrosine kinase 2 (TYK2) mediates cytokine signaling through type 1 interferon, interleukin (IL)-12/IL-23, and the IL-10 family. There appears to be an association between TYK2 genetic variants and inflammatory conditions, and clinical evidence suggests that selective inhibition of TYK2 could produce a unique therapeutic profile. Here, we describe the discovery of compound 9 (GLPG3667), a reversible and selective TYK2 adenosine triphosphate competitive inhibitor in development for the treatment of inflammatory and autoimmune diseases. The preclinical pharmacokinetic profile was favorable, and TYK2 selectivity was confirmed in peripheral blood mononuclear cells and whole blood assays. Dermal ear inflammation was reduced in an IL-23-induced in vivo mouse model of psoriasis. GLPG3667 also completed a phase 1b study (NCT04594928) in patients with moderate-to-severe psoriasis where clinical effect was shown within the 4 weeks of treatment and it is now in phase 2 trials for the treatment of dermatomyositis (NCT05695950) and systemic lupus erythematosus (NCT05856448).
Asunto(s)
Adenosina Trifosfato , Enfermedades Autoinmunes , Inhibidores de Proteínas Quinasas , Psoriasis , TYK2 Quinasa , Humanos , Animales , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/química , Ratones , Enfermedades Autoinmunes/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Psoriasis/tratamiento farmacológico , Femenino , Descubrimiento de Drogas , Masculino , Lupus Eritematoso Sistémico/tratamiento farmacológico , Relación Estructura-Actividad , AdultoRESUMEN
There are currently no approved disease-modifying osteoarthritis (OA) drugs (DMOADs). The aggrecanase ADAMTS-5 is key in the degradation of human aggrecan (AGC), a component of cartilage. Therefore, ADAMTS-5 is a promising target for the identification of DMOADs. We describe the discovery of GLPG1972/S201086, a potent and selective ADAMTS-5 inhibitor obtained by optimization of a promising hydantoin series following an HTS. Biochemical activity against rat and human ADAMTS-5 was assessed via a fluorescence-based assay. ADAMTS-5 inhibitory activity was confirmed with human aggrecan using an AGC ELISA. The most promising compounds were selected based on reduction of glycosaminoglycan release after interleukin-1 stimulation in mouse cartilage explants and led to the discovery of GLPG1972/S201086. The anticatabolic activity was confirmed in mouse cartilage explants (IC50 < 1.5 µM). The cocrystal structure of GLPG1972/S201086 with human recombinant ADAMTS-5 is discussed. GLPG1972/S201086 has been investigated in a phase 2 clinical study in patients with knee OA (NCT03595618).
Asunto(s)
Proteína ADAMTS5/antagonistas & inhibidores , Osteoartritis/tratamiento farmacológico , Proteína ADAMTS5/metabolismo , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Perros , Glicosaminoglicanos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Osteoartritis/metabolismo , RatasRESUMEN
GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5'-O-[γ-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein.
Asunto(s)
Descubrimiento de Drogas/métodos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Acetatos/química , Acetatos/farmacología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Células CACO-2 , Células Cultivadas , Perros , Evaluación Preclínica de Medicamentos/métodos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Activating receptor activator of NF-kappaB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-alpha-induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF-induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-alpha promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF.
Asunto(s)
Resorción Ósea , Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/metabolismo , Péptidos/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Calcio de la Dieta , Proteínas Portadoras/química , Línea Celular , Células Cultivadas , Femenino , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vértebras Lumbares/anatomía & histología , Vértebras Lumbares/patología , Masculino , Glicoproteínas de Membrana/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Osteoclastos/citología , Osteoclastos/fisiología , Osteoprotegerina , Ovariectomía , Péptidos/química , Péptidos/genética , Conformación Proteica , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/genética , Alineación de Secuencia , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND AND OBJECTIVES: GLPG1690 is an autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis. Several publications suggested a role of autotaxin in the control of disease-affected lung function and of lysophosphatidic acid in lung remodeling processes. The aim of the current article was to describe the exposure-response relationship of GLPG1690 and further develop a rational basis to support dose selection for clinical trials in patients with idiopathic pulmonary fibrosis. METHODS: Two trials were conducted in healthy volunteers: in the first trial, GLPG1690 was administered as single doses from 20 mg up to 1500 mg, and subsequently in multiple daily doses of 300-1000 mg. In a second trial, the interaction of rifampin with 600 mg of GLPG1690 was evaluated. A third trial was conducted in patients with idiopathic pulmonary fibrosis administered 600 mg of GLPG1690 once daily for 12 weeks. The exposure-response (lysophosphatidic acid C18:2 reduction) relationship of GLPG1690 was first described using non-linear mixed-effects modeling and the model was subsequently deployed to simulate a lysophosphatidic acid C18:2 reduction as a biomarker of autotaxin inhibition in the dose range from 50 to 1000 mg once or twice daily. RESULTS: The population pharmacokinetics and lysophosphatidic acid C18:2 response of GLPG1690 were adequately described by a combined population pharmacokinetic and pharmacokinetic/pharmacodynamic model. Dose, formulation, rifampin co-administration, health status (healthy volunteer vs. patient with idiopathic pulmonary fibrosis), and baseline lysophosphatidic acid C18:2 were identified as covariates in the model. The effect of dose on systemic clearance indicated that GLPG1690 followed a more than dose-proportional increase in exposure over the simulated dose range of 50-1000 mg once daily. Model-based simulations showed reductions in lysophosphatidic acid C18:2 of at least 80% with doses greater or equal to 200 mg once daily. CONCLUSION: Based on these results, 200 and 600 mg once-daily doses were selected for future clinical trials in patients with idiopathic pulmonary fibrosis.
Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Imidazoles/farmacocinética , Lisofosfolípidos/farmacocinética , Hidrolasas Diéster Fosfóricas/efectos de los fármacos , Pirimidinas/farmacocinética , Adulto , Anciano , Antibióticos Antituberculosos/administración & dosificación , Biomarcadores Farmacológicos/sangre , Estudios de Casos y Controles , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Voluntarios Sanos , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Imidazoles/administración & dosificación , Imidazoles/farmacología , Lisofosfolípidos/sangre , Lisofosfolípidos/farmacología , Masculino , Persona de Mediana Edad , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Rifampin/administración & dosificaciónRESUMEN
Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound 1, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (11). Compound 11 was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound 11 is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients.
Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Imidazoles/uso terapéutico , Hidrolasas Diéster Fosfóricas/efectos de los fármacos , Pirimidinas/uso terapéutico , Animales , Humanos , Imidazoles/farmacología , Ratones , Ratones Noqueados , Hidrolasas Diéster Fosfóricas/genética , Pirimidinas/farmacología , RatasRESUMEN
FFA2, also called GPR43, is a G-protein coupled receptor for short chain fatty acids which is involved in the mediation of inflammatory responses. A class of azetidines was developed as potent FFA2 antagonists. Multiparametric optimization of early hits with moderate potency and suboptimal ADME properties led to the identification of several compounds with nanomolar potency on the receptor combined with excellent pharmacokinetic (PK) parameters. The most advanced compound, 4-[[(R)-1-(benzo[b]thiophene-3-carbonyl)-2-methyl-azetidine-2-carbonyl]-(3-chloro-benzyl)-amino]-butyric acid 99 (GLPG0974), is able to inhibit acetate-induced neutrophil migration strongly in vitro and demonstrated ability to inhibit a neutrophil-based pharmacodynamic (PD) marker, CD11b activation-specific epitope [AE], in a human whole blood assay. All together, these data supported the progression of 99 toward next phases, becoming the first FFA2 antagonist to reach the clinic.
Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Azetidinas/metabolismo , Butiratos/síntesis química , Receptores de Superficie Celular/antagonistas & inhibidores , Tiofenos/síntesis química , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Azetidinas/síntesis química , Azetidinas/farmacocinética , Azetidinas/farmacología , Butiratos/farmacocinética , Butiratos/farmacología , Humanos , Enfermedades del Sistema Inmune , Concentración 50 Inhibidora , Trastornos Leucocíticos , Ratones , Microsomas Hepáticos/metabolismo , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tiofenos/farmacocinética , Tiofenos/farmacologíaRESUMEN
Structural modification performed on a 4-methyl-4-(4-hydroxyphenyl)hydantoin series is described which resulted in the development of a new series of 4-(hydroxymethyl)diarylhydantoin analogues as potent, partial agonists of the human androgen receptor. This led to the identification of (S)-(-)-4-(4-(hydroxymethyl)-3-methyl-2,5-dioxo-4-phenylimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile ((S)-(-)-18a, GLPG0492) evaluated in vivo in a classical model of orchidectomized rat. In this model, (-)-18a exhibited anabolic activity on muscle, strongly dissociated from the androgenic activity on prostate after oral dosing. (-)-18a has very good pharmacokinetic properties, including bioavailability in rat (F > 50%), and is currently under evaluation in phase I clinical trials.
Asunto(s)
Andrógenos/síntesis química , Hidantoínas/síntesis química , Anabolizantes/síntesis química , Anabolizantes/química , Anabolizantes/farmacología , Antagonistas de Receptores Androgénicos/síntesis química , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/química , Andrógenos/farmacología , Animales , Disponibilidad Biológica , Agonismo Parcial de Drogas , Células HeLa , Humanos , Hidantoínas/química , Hidantoínas/farmacología , Masculino , Modelos Moleculares , Conformación Molecular , Músculo Esquelético/anatomía & histología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Orquiectomía , Tamaño de los Órganos/efectos de los fármacos , Próstata/anatomía & histología , Próstata/efectos de los fármacos , Próstata/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Activación Transcripcional/efectos de los fármacosRESUMEN
Acquisition of an invasive phenotype by cancer cells is a requirement for bone metastasis. Transformed epithelial cells can switch to a motile, mesenchymal phenotype by epithelial-mesenchymal transition (EMT). Recently, it has been shown that EMT is functionally linked to prostate cancer stem cells, which are not only critically involved in prostate cancer maintenance but also in bone metastasis. We showed that treatment with the non-peptide α(v)-integrin antagonist GLPG0187 dose-dependently increased the E-cadherin/vimentin ratio, rendering the cells a more epithelial, sessile phenotype. In addition, GLPG0187 dose-dependently diminished the size of the aldehyde dehydrogenase high subpopulation of prostate cancer cells, suggesting that α(v)-integrin plays an important role in maintaining the prostate cancer stem/progenitor pool. Our data show that GLPG0187 is a potent inhibitor of osteoclastic bone resorption and angiogenesis in vitro and in vivo. Real-time bioluminescent imaging in preclinical models of prostate cancer demonstrated that blocking α(v)-integrins by GLPG0187 markedly reduced their metastatic tumor growth according to preventive and curative protocols. Bone tumor burden was significantly lower in the preventive protocol. In addition, the number of bone metastases/mouse was significantly inhibited. In the curative protocol, the progression of bone metastases and the formation of new bone metastases during the treatment period was significantly inhibited. In conclusion, we demonstrate that targeting of integrins by GLPG0187 can inhibit the de novo formation and progression of bone metastases in prostate cancer by antitumor (including inhibition of EMT and the size of the prostate cancer stem cell population), antiresorptive, and antiangiogenic mechanisms.