Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203173

RESUMEN

Clostridioides difficile is an important human pathogen causing antibiotic-associated diarrhoea worldwide. Besides using antibiotics for treatment, the interest in bacteriophages as an alternative therapeutic option has increased. Prophage abundance and genetic diversity are well-documented in clinical strains, but the carriage of prophages in environmental strains of C. difficile has not yet been explored. Thus, the prevalence and genetic diversity of integrated prophages in the genomes of 166 environmental C. difficile isolates were identified. In addition, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems were determined in the genomes of prophage regions. Predicted prophages and CRISPR-Cas systems were identified by using the PHASTER web server and CRISPRCasFinder, respectively. Phylogenetic relationships among predicated prophages were also constructed based on phage-related genes, terminase large (TerL) subunits and LysM. Among 372 intact prophages, the predominant prophages were phiCDHM1, phiCDHM19, phiMMP01, phiCD506, phiCD27, phiCD211, phiMMP03, and phiC2, followed by phiMMP02, phiCDKM9, phiCD6356, phiCDKM15, and phiCD505. Two newly discovered siphoviruses, phiSM101- and phivB_CpeS-CP51-like Clostridium phages, were identified in two C. difficile genomes. Most prophages were found in sequence types (STs) ST11, ST3, ST8, ST109, and ST2, followed by ST6, ST17, ST4, ST5, ST44, and ST58. An obvious correlation was found between prophage types and STs/ribotypes. Most predicated prophages carry CRISPR arrays. Some prophages carry several gene products, such as accessory gene regulator (Agr), putative spore protease, and abortive infection (Abi) systems. This study shows that prophage carriage, along with genetic diversity and their CRISPR arrays, may play a role in the biology, lifestyle, and fitness of their host strains.


Asunto(s)
Bacteriófagos , Clostridioides difficile , Humanos , Profagos/genética , Clostridioides , Clostridioides difficile/genética , Filogenia , Bacteriófagos/genética , Variación Genética
2.
Environ Microbiol ; 24(3): 1573-1589, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35192222

RESUMEN

Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing. Concentrations of heavy metals, antibiotics, the biocides triclosan, triclocarban and quaternary ammonium compounds (QACs) were measured. Strong and significant correlations were revealed between several target genes and concentrations of Cu, Zn, triclosan, several antibiotics and QACs. Interestingly, the size of the sewage treatment plant (inhabitant equivalents) was negatively correlated with antibiotic concentrations, RGs and MGEs abundances and had little influence on the load of metals and QACs or the microbial community composition. Biosolids from WWTPs with anaerobic treatment and hospitals in their catchment area were associated with a higher abundance of potential opportunistic pathogens and higher concentrations of QACs.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Microbiota , Contaminantes del Suelo , Triclosán , Purificación del Agua , Antibacterianos/farmacología , Biosólidos , Secuencias Repetitivas Esparcidas , Microbiota/genética , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Suelo , Triclosán/farmacología
3.
Curr Issues Mol Biol ; 30: 17-38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30070649

RESUMEN

Plants are colonized by diverse microorganisms, which may positively or negatively influence the plant fitness. The positive impact includes nutrient acquisition, enhancement of resistance to biotic and abiotic stresses, both important factors for plant growth and survival, while plant pathogenic bacteria can cause diseases. Plant pathogens are adapted to negate or evade plant defense mechanisms, e.g. by the injection of effector proteins into the host cells or by avoiding the recognition by the host. Plasmids play an important role in the rapid bacterial adaptation to stresses and changing environmental conditions. In the plant environment, plasmids can further provide a selective advantage for the host bacteria, e.g. by carrying genes encoding metabolic pathways, metal and antibiotic resistances, or pathogenicity-related genes. However, we are only beginning to understand the role of mobile genetic elements and horizontal gene transfer for plant-associated bacteria. In this review, we aim to provide a short update on what is known about plasmids and horizontal gene transfer of plant associated bacteria and their role in plant-bacteria interactions. Furthermore, we discuss tools available to study the plant-associated mobilome, its transferability, and its bacterial hosts.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Fenómenos Fisiológicos de las Plantas , Plásmidos/genética , Simbiosis , Endófitos , Transferencia de Gen Horizontal , Interacciones Huésped-Patógeno , Microbiota , Enfermedades de las Plantas/microbiología , Rizosfera
4.
Antibiotics (Basel) ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671363

RESUMEN

Clostridioides difficile (C. difficile) is the most common pathogen causing antibiotic-associated intestinal diseases in humans and some animal species, but it can also be present in various environments outside hospitals. Thus, the objective of this study was to investigate the presence and the characteristics of toxin-encoding genes and antimicrobial resistance of C. difficile isolates from different environmental sources. C. difficile was found in 32 out of 81 samples (39.50%) after selective enrichment of spore-forming bacteria and in 45 samples (55.56%) using a TaqMan-based qPCR assay. A total of 169 C. difficile isolates were recovered from those 32 C. difficile-positive environmental samples. The majority of environmental C. difficile isolates were toxigenic, with many (88.75%) positive for tcdA and tcdB. Seventy-four isolates (43.78%) were positive for binary toxins, cdtA and cdtB, and 19 isolates were non-toxigenic. All the environmental C. difficile isolates were susceptible to vancomycin and metronidazole, and most isolates were resistant to ciprofloxacin (66.86%) and clindamycin (46.15%), followed by moxifloxacin (13.02%) and tetracycline (4.73%). Seventy-five isolates (44.38%) showed resistance to at least two of the tested antimicrobials. C. difficile strains are commonly present in various environmental sources contaminated by feces and could be a potential source of community-associated C. difficile infections.

5.
Microorganisms ; 11(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37894155

RESUMEN

Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile isolates from diverse fecally contaminated environmental sources. C. difficile isolates were recovered from different environmental samples in Northern Germany. Antimicrobial susceptibility testing was determined by E-test or disk diffusion method. Toxin genes (tcdA and tcdB), genes coding for binary toxins (cdtAB) and ribotyping were determined by PCR. Furthermore, 166 isolates were subjected to whole genome sequencing (WGS) for core genome multi-locus sequence typing (cgMLST) and extraction of AMR and virulence-encoding genes. Eighty-nine percent (148/166) of isolates were toxigenic, and 51% (76/148) were positive for cdtAB. Eighteen isolates (11%) were non-toxigenic. Thirty distinct RTs were identified. The most common RTs were RT127, RT126, RT001, RT078, and RT014. MLST identified 32 different sequence types (ST). The dominant STs were ST11, followed by ST2, ST3, and ST109. All isolates were susceptible to vancomycin and metronidazole and displayed a variable rate of resistance to moxifloxacin (14%), clarithromycin (26%) and rifampicin (2%). AMR genes, such as gyrA/B, blaCDD-1/2, aph(3')-llla-sat-4-ant(6)-la cassette, ermB, tet(M), tet(40), and tetA/B(P), conferring resistance toward fluoroquinolone, beta-lactam, aminoglycoside, macrolide and tetracycline antimicrobials, were found in 166, 137, 29, 32, 21, 72, 17, and 9 isolates, respectively. Eleven "hypervirulent" RT078 strains were detected, and several isolates belonged to RTs (i.e., RT127, RT126, RT023, RT017, RT001, RT014, RT020, and RT106) associated with CA-CDI, indicating possible transmission between humans and environmental sources pointing out to a zoonotic potential.

6.
Methods Mol Biol ; 2075: 39-60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31584153

RESUMEN

Plasmids play a major role in the bacterial adaptation to changing and stressful environmental conditions caused by antibiotics, heavy metals, and disinfectants. However, the investigation of the ecology and diversity of environmental plasmids is challenging due to their typically low abundance in soil bacterial communities and the low cultivability of their hosts. Here we discuss the potentials and limitations of cultivation-dependent and cultivation-independent approaches for detecting and quantifying plasmids in total community DNA from environmental samples. Protocols for PCR-based detection of plasmid-specific sequences in total community DNA are presented. Furthermore, protocols to obtain and characterize plasmids either from isolates (endogenous plasmid isolation) or by capturing into a recipient strain by biparental and triparental mating will be provided.


Asunto(s)
Microbiología Ambiental , Técnicas de Diagnóstico Molecular , Plásmidos/genética , Plásmidos/aislamiento & purificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Conjugación Genética , ADN Bacteriano/genética , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Front Microbiol ; 11: 575391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193188

RESUMEN

Due to the high prevalence of colistin-resistant Enterobacteriaceae in poultry and pigs, process waters and wastewater from slaughterhouses were considered as a hotspot for isolates carrying plasmid-encoded, mobilizable colistin resistances (mcr genes). Thus, questions on the effectiveness of wastewater treatment in in-house and municipal wastewater treatment plants (WWTPs) as well as on the diversity of the prevailing isolates, plasmid types, and their transmissibility arise. Process waters and wastewater accruing in the delivery and unclean areas of two poultry and two pig slaughterhouses were screened for the presence of target colistin-resistant bacteria (i.e., Escherichia coli, Klebsiella spp., Enterobacter cloacae complex). In-house and municipal WWTPs (mWWTPs) including receiving waterbodies were investigated as well. Samples taken in the poultry slaughterhouses yielded the highest occurrence of target colistin-resistant Enterobacteriaceae (40.2%, 33/82), followed by mWWTPs (25.0%, 9/36) and pig slaughterhouses (14.9%, 10/67). Recovered isolates exhibited various resistance patterns. The resistance rates using epidemiological cut-off values were higher in comparison to those obtained with clinical breakpoints. Noteworthy, MCR-1-producing Klebsiella pneumoniae and E. coli were detected in scalding waters and preflooders of mWWTPs. A total of 70.8% (46/65) of E. coli and 20.6% (7/34) of K. pneumoniae isolates carried mcr-1 on a variety of transferable plasmids with incompatibility groups IncI1, IncHI2, IncX4, IncF, and IncI2 ranging between 30 and 360 kb. The analyzed isolates carrying mcr-1 on transferable plasmids (n = 53) exhibited a broad diversity, as they were assigned to 25 different XbaI profiles. Interestingly, in the majority of colistin-resistant mcr-negative E. coli and K. pneumoniae isolates non-synonymous polymorphisms in pmrAB were detected. Our findings demonstrated high occurrence of colistin-resistant E. coli and K. pneumoniae carrying mcr-1 on transferrable plasmids in poultry and pig slaughterhouses and indicate their dissemination into surface water.

8.
Front Microbiol ; 11: 590776, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329469

RESUMEN

IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1ß, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.

9.
Front Microbiol ; 10: 3050, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32063888

RESUMEN

The role of agriculture in the transfer of drug resistant pathogens to humans is widely debated and poorly understood. Escherichia coli is a valuable indicator organism for contamination and carriage of antimicrobial resistance (AMR) in foods. Whilst whole genome sequences for E. coli from animals and associated meats are common, sequences from produce are scarce. Produce may acquire drug resistant E. coli from animal manure fertilizers, contaminated irrigation water and wildlife, particularly birds. Whole genome sequencing was used to characterize 120 tetracycline (TET) resistant E. coli from store-bought, ready-to-eat cilantro, arugula and mixed salad from two German cities. E. coli were recovered on the day of purchase and after 7 days of refrigeration. Cilantro was far more frequently contaminated with TET-resistant E. coli providing 102 (85%) sequenced strains. Phylogroup B1 dominated the collection (n = 84, 70%) with multi-locus sequence types B1-ST6186 (n = 37, 31%), C-ST165 (n = 17, 14%), B1-ST58 (n = 14, 12%), B1-ST641 (n = 8, 7%), and C-ST88 (n = 5, 4%) frequently identified. Notably, seven strains of diverse sequence type (ST) carried genetic indicators of ColV virulence plasmid carriage. A number of previously identified and novel integrons associated with insertion elements including IS26 were also identified. Storage may affect the lineages of E. coli isolated, however further studies are needed. Our study indicates produce predominantly carry E. coli with a commensal phylogroup and a variety of AMR and virulence-associated traits. Genomic surveillance of bacteria that contaminate produce should be a matter of public health importance in order to develop a holistic understanding of the environmental dimensions of AMR.

10.
Front Microbiol ; 10: 725, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057496

RESUMEN

Manure application to agricultural soil introduces antibiotic residues and increases the abundance of antibiotic-resistant bacteria (ARB) carrying antibiotic resistance genes (ARGs), often located on mobile genetic elements (MGEs). The rhizosphere is regarded as a hotspot of microbial activity and gene transfer, which can alter and prolong the effects of organic fertilizers containing antibiotics. However, not much is known about the influence of plants on the effects of doxycycline applied to soil via manure. In this study, the effects of manure spiked with or without doxycycline on the prokaryotic community composition as well as on the relative abundance of ARGs and MGEs in lettuce rhizosphere and bulk soil were investigated by means of a polyphasic cultivation-independent approach. Samples were taken 42 days after manure application, and total community DNA was extracted. Besides a pronounced manure effect, doxycycline spiking caused an additional enrichment of ARGs and MGEs. High-throughput quantitative PCR revealed an increase in tetracycline, aminoglycoside, and macrolide-lincosamide-streptogramin B (MLSB) resistance genes associated with the application of manure spiked with doxycycline. This effect was unexpectedly lower in the rhizosphere than in bulk soil, suggesting a faster dissipation of the antibiotic and a more resilient prokaryotic community in the rhizosphere. Interestingly, the tetracycline resistance gene tetA(P) was highly enriched in manure-treated bulk soil and rhizosphere, with highest values observed in doxycycline-treated bulk soil, concurring with an enrichment of Clostridia. Thus, the gene tetA(P) might be a suitable marker of soil contamination by ARB, ARGs, and antibiotics of manure origin. These findings illustrate that the effects of manure and doxycycline on ARGs and MGEs differ between rhizosphere and bulk soil, which needs to be considered when assessing risks for human health connected to the spread of ARGs in the environment.

11.
Environ Int ; 130: 104735, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31260930

RESUMEN

High antibiotic releases from manufacturing facilities have been identified as a risk factor for antibiotic resistance development in bacterial pathogens. However, the role of antibiotic pollution in selection and transferability of antibiotic resistance genes (ARGs) is still limited. In this study, we analyzed effluents from azithromycin-synthesis and veterinary-drug formulation facilities as well as sediments from receiving river and creek taken at the effluent discharge sites, upstream and downstream of discharge. Culturing showed that the effluent discharge significantly increased the proportion of antibiotic resistant bacteria in exposed sediments compared to the upstream ones. Quantitative real-time PCR revealed that effluents from both industries contained high and similar relative abundances of resistance genes [sul1, sul2, qacE/qacEΔ1, tet(A)], class 1 integrons (intI1) and IncP-1 plasmids (korB). Consequently, these genes significantly increased in relative abundances in receiving sediments, with more pronounced effects being observed for river than for creek sediments due to lower background levels of the investigated genes in the river. In addition, effluent discharge considerably increased transfer frequencies of captured ARGs from exposed sediments into Escherichia coli CV601 recipient as shown by biparental mating experiments. Most plasmids exogenously captured from effluent and polluted sediments belonged to the broad host range IncP-1ε plasmid group, conferred multiple antibiotic resistance and harbored class 1 integrons. Discharge of pharmaceutical waste from antibiotic manufacturing sites thus poses a risk for development and dissemination of multi-resistant bacteria, including pathogens.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana , Genes Bacterianos/genética , Residuos Industriales , Secuencias Repetitivas Esparcidas/genética , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Industria Farmacéutica , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Residuos Industriales/efectos adversos , Residuos Industriales/análisis , Ríos/química
12.
mBio ; 9(6)2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401772

RESUMEN

Produce is increasingly recognized as a reservoir of human pathogens and transferable antibiotic resistance genes. This study aimed to explore methods to characterize the transferable resistome of bacteria associated with produce. Mixed salad, arugula, and cilantro purchased from supermarkets in Germany were analyzed by means of cultivation- and DNA-based methods. Before and after a nonselective enrichment step, tetracycline (TET)-resistant Escherichia coli were isolated and plasmids conferring TET resistance were captured by exogenous plasmid isolation. TET-resistant E. coli isolates, transconjugants, and total community DNA (TC-DNA) from the microbial fraction detached from leaves or after enrichment were analyzed for the presence of resistance genes, class 1 integrons, and various plasmids by real-time PCR and PCR-Southern blot hybridization. Real-time PCR primers were developed for IncI and IncF plasmids. TET-resistant E. coli isolated from arugula and cilantro carried IncF, IncI1, IncN, IncHI1, IncU, and IncX1 plasmids. Three isolates from cilantro were positive for IncN plasmids and blaCTX-M-1 From mixed salad and cilantro, IncF, IncI1, and IncP-1ß plasmids were captured exogenously. Importantly, whereas direct detection of IncI and IncF plasmids in TC-DNA failed, these plasmids became detectable in DNA extracted from enrichment cultures. This confirms that cultivation-independent DNA-based methods are not always sufficiently sensitive to detect the transferable resistome in the rare microbiome. In summary, this study showed that an impressive diversity of self-transmissible multiple resistance plasmids was detected in bacteria associated with produce that is consumed raw, and exogenous capturing into E. coli suggests that they could transfer to gut bacteria as well.IMPORTANCE Produce is one of the most popular food commodities. Unfortunately, leafy greens can be a reservoir of transferable antibiotic resistance genes. We found that IncF and IncI plasmids were the most prevalent plasmid types in E. coli isolates from produce. This study highlights the importance of the rare microbiome associated with produce as a source of antibiotic resistance genes that might escape cultivation-independent detection, yet may be transferred to human pathogens or commensals.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Plásmidos/genética , Verduras/microbiología , Coriandrum/microbiología , Escherichia coli/efectos de los fármacos , Transferencia de Gen Horizontal , Alemania , Integrones/genética , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Alimentos Crudos/microbiología , Tetraciclina/farmacología
13.
FEMS Microbiol Ecol ; 94(2)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29087461

RESUMEN

Veterinary antibiotics, bacteria carrying antibiotic resistance determinants located on mobile genetic elements and nutrients are spread on agricultural soil using manure as fertilizer. However, systematic quantitative studies linking antibiotic concentrations and antimicrobial resistance genes (ARGs) in manure and the environment are scarce but needed to assess environmental risks. In this microcosm study, a sandy and a loamy soil were mixed with manure spiked with streptomycin or doxycycline at five concentrations. Total-community DNA was extracted on days 28 and 92, and the abundances of ARGs (aadA, strA, tet(A), tet(M), tet(W), tet(Q), sul1, qacE/qacEΔ1) and class 1 and 2 integron integrase genes (intI1 and intI2) were determined by qPCR relative to 16S rRNA genes. Effects on the bacterial community composition were evaluated by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. Manure application to the soils strongly increased the relative abundance of most tested genes. Antibiotics caused further enrichments which decreased over time and were mostly seen at high concentrations. Strikingly, the effects on relative gene abundances and soil bacterial community composition were more pronounced in sandy soil. The concept of defining antibiotic threshold concentrations for environmental risk assessments remains challenging due to the various influencing factors.


Asunto(s)
Antibacterianos/farmacología , Bacterias/crecimiento & desarrollo , Doxiciclina/farmacología , Farmacorresistencia Microbiana/genética , Fertilizantes/microbiología , Estiércol/microbiología , Microbiota/genética , Estreptomicina/farmacología , Agricultura/métodos , Bacterias/efectos de los fármacos , Bacterias/genética , Fertilizantes/análisis , Integrasas/genética , Integrones/genética , Microbiota/efectos de los fármacos , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA