Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32699083

RESUMEN

Merkel cell polyomavirus (MCPyV) is a human double-stranded DNA tumor virus. MCPyV cell entry is unique among members of the polyomavirus family as it requires the engagement of two types of glycans, sialylated oligosaccharides and sulfated glycosaminoglycans (GAGs). Here, we present crystallographic and cryo-electron microscopic structures of the icosahedral MCPyV capsid and analysis of its glycan interactions via nuclear magnetic resonance (NMR) spectroscopy. While sialic acid binding is specific for α2-3-linked sialic acid and mediated by the exposed apical loops of the major capsid protein VP1, a broad range of GAG oligosaccharides bind to recessed regions between VP1 capsomers. Individual VP1 capsomers are tethered to one another by an extensive disulfide network that differs in architecture from previously described interactions for other PyVs. An unusual C-terminal extension in MCPyV VP1 projects from the recessed capsid regions. Mutagenesis experiments show that this extension is dispensable for receptor interactions.IMPORTANCE The MCPyV genome was found to be clonally integrated in 80% of cases of Merkel cell carcinoma (MCC), a rare but aggressive form of human skin cancer, strongly suggesting that this virus is tumorigenic. In the metastasizing state, the course of the disease is often fatal, especially in immunocompromised individuals, as reflected by the high mortality rate of 33 to 46% and the low 5-year survival rate (<45%). The high seroprevalence of about 60% makes MCPyV a serious health care burden and illustrates the need for targeted treatments. In this study, we present the first high-resolution structural data for this human tumor virus and demonstrate that the full capsid is required for the essential interaction with its GAG receptor(s). Together, these data can be used as a basis for future strategies in drug development.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Poliomavirus de Células de Merkel/metabolismo , Receptores de Superficie Celular/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/genética , Línea Celular , Microscopía por Crioelectrón , Humanos , Poliomavirus de Células de Merkel/genética , Poliomavirus de Células de Merkel/ultraestructura , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Estructura Secundaria de Proteína , Receptores de Superficie Celular/genética
2.
Proc Natl Acad Sci U S A ; 115(18): E4264-E4273, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29674446

RESUMEN

Human adenovirus 52 (HAdV-52) is one of only three known HAdVs equipped with both a long and a short fiber protein. While the long fiber binds to the coxsackie and adenovirus receptor, the function of the short fiber in the virus life cycle is poorly understood. Here, we show, by glycan microarray analysis and cellular studies, that the short fiber knob (SFK) of HAdV-52 recognizes long chains of α-2,8-linked polysialic acid (polySia), a large posttranslational modification of selected carrier proteins, and that HAdV-52 can use polySia as a receptor on target cells. X-ray crystallography, NMR, molecular dynamics simulation, and structure-guided mutagenesis of the SFK reveal that the nonreducing, terminal sialic acid of polySia engages the protein with direct contacts, and that specificity for polySia is achieved through subtle, transient electrostatic interactions with additional sialic acid residues. In this study, we present a previously unrecognized role for polySia as a cellular receptor for a human viral pathogen. Our detailed analysis of the determinants of specificity for this interaction has general implications for protein-carbohydrate interactions, particularly concerning highly charged glycan structures, and provides interesting dimensions on the biology and evolution of members of Human mastadenovirus G.


Asunto(s)
Adenovirus Humanos/química , Simulación de Dinámica Molecular , Ácidos Siálicos/química , Adenovirus Humanos/metabolismo , Línea Celular Tumoral , Humanos , Ácidos Siálicos/metabolismo
3.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626687

RESUMEN

Merkel cell polyomavirus (MCPyV) is a small, nonenveloped tumor virus associated with an aggressive form of skin cancer, Merkel cell carcinoma (MCC). MCPyV infections are highly prevalent in the human population, with MCPyV virions being continuously shed from human skin. However, the precise host cell tropism(s) of MCPyV remains unclear: MCPyV is able to replicate within a subset of dermal fibroblasts, but MCPyV DNA has also been detected in a variety of other tissues. However, MCPyV appears different from other polyomaviruses, as it requires sulfated polysaccharides, such as heparan sulfates and/or chondroitin sulfates, for initial attachment. Like other polyomaviruses, MCPyV engages sialic acid as a (co)receptor. To explore the infectious entry process of MCPyV, we analyzed the cell biological determinants of MCPyV entry into A549 cells, a highly transducible lung carcinoma cell line, in comparison to well-studied simian virus 40 and a number of other viruses. Our results indicate that MCPyV enters cells via caveolar/lipid raft-mediated endocytosis but not macropinocytosis, clathrin-mediated endocytosis, or glycosphingolipid-enriched carriers. The viruses were internalized in small endocytic pits that led the virus to endosomes and from there to the endoplasmic reticulum (ER). Similar to other polyomaviruses, trafficking required microtubular transport, acidification of endosomes, and a functional redox environment. To our surprise, the virus was found to acquire a membrane envelope within endosomes, a phenomenon not reported for other viruses. Only minor amounts of viruses reached the ER, while the majority was retained in endosomal compartments, suggesting that endosome-to-ER trafficking is a bottleneck during infectious entry.IMPORTANCE MCPyV is the first polyomavirus directly implicated in the development of an aggressive human cancer, Merkel cell carcinoma (MCC). Although MCPyV is constantly shed from healthy skin, the MCC incidence increases among aging and immunocompromised individuals. To date, the events connecting initial MCPyV infection and subsequent transformation still remain elusive. MCPyV differs from other known polyomaviruses concerning its cell tropism, entry receptor requirements, and infection kinetics. In this study, we examined the cellular requirements for endocytic entry as well as the subcellular localization of incoming virus particles. A thorough understanding of the determinants of the infectious entry pathway and the specific biological niche will benefit prevention of virus-derived cancers such as MCC.


Asunto(s)
Poliomavirus de Células de Merkel/patogenicidad , Infecciones por Polyomavirus/virología , Células A549 , Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/virología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/fisiología , Fibroblastos/virología , Células HEK293 , Células HeLa , Heparitina Sulfato/metabolismo , Humanos , Poliomavirus de Células de Merkel/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Piel/virología , Neoplasias Cutáneas/virología , Infecciones Tumorales por Virus/virología , Tropismo Viral/fisiología
4.
Glycobiology ; 28(10): 765-773, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982679

RESUMEN

Complement factor H (FH), an elongated and substantially glycosylated 20-domain protein, is a soluble regulator of the complement alternative pathway (AP). It contains several glycan binding sites which mediate recognition of α2-3-linked sialic acid (FH domain 20) and glycosaminoglycans (domains 6-8 and 19-20). FH also binds the complement C3-activation product C3b, a powerful opsonin and focal point for the formation of C3-convertases of the AP feedback loop. In freely circulating FH the C3b binding site in domains 19-20 is occluded, a phenomenon that is not fully understood and could be mediated by an intramolecular interaction between FH's intrinsic sialylated glycosylation and its own sialic acid binding site. In order to assess this possibility, we characterized FH's sialylation with respect to glycosidic linkage type and searched for further potential, not yet characterized sialic acid binding sites in FH and its seven-domain spanning splice variant and fellow complement regulator FH like-1 (FHL-1). We also probed FH binding to the sialic acid variant Neu5Gc which is not expressed in humans but on heterologous erythrocytes that restrict the human AP and in FH transgenic mice. We find that FH contains mostly α2-6-linked sialic acid, making an intramolecular interaction with its α2-3-sialic acid specific binding site and an associated self-lock mechanism unlikely, substantiate that there is only a single sialic acid binding site in FH and none in FHL-1, and demonstrate direct binding of FH to the nonhuman sialic acid Neu5Gc, supporting the use of FH transgenic mouse models for studies of complement-related diseases.


Asunto(s)
Ácido N-Acetilneuramínico/análisis , Animales , Sitios de Unión , Conformación de Carbohidratos , Factor H de Complemento/química , Factor H de Complemento/aislamiento & purificación , Factor H de Complemento/metabolismo , Humanos , Ratones , Ratones Transgénicos , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
5.
PLoS Pathog ; 11(8): e1005112, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26302170

RESUMEN

Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) was isolated from a patient suffering from trichodysplasia spinulosa, a skin disease that can appear in severely immunocompromised patients. While TSPyV is one of the five members of the polyomavirus family that are directly linked to a human disease, details about molecular recognition events, the viral entry pathway, and intracellular trafficking events during TSPyV infection remain unknown. Here we have used a structure-function approach to shed light on the first steps of TSPyV infection. We established by cell binding and pseudovirus infection studies that TSPyV interacts with sialic acids during attachment and/or entry. Subsequently, we solved high-resolution X-ray structures of the major capsid protein VP1 of TSPyV in complex with three different glycans, the branched GM1 glycan, and the linear trisaccharides α2,3- and α2,6-sialyllactose. The terminal sialic acid of all three glycans is engaged in a unique binding site on TSPyV VP1, which is positioned about 18 Å from established sialic acid binding sites of other polyomaviruses. Structure-based mutagenesis of sialic acid-binding residues leads to reduction in cell attachment and pseudovirus infection, demonstrating the physiological relevance of the TSPyV VP1-glycan interaction. Furthermore, treatments of cells with inhibitors of N-, O-linked glycosylation, and glycosphingolipid synthesis suggest that glycolipids play an important role during TSPyV infection. Our findings elucidate the first molecular recognition events of cellular infection with TSPyV and demonstrate that receptor recognition by polyomaviruses is highly variable not only in interactions with sialic acid itself, but also in the location of the binding site.


Asunto(s)
Proteínas de la Cápside/metabolismo , Infecciones por Polyomavirus/metabolismo , Poliomavirus/patogenicidad , Internalización del Virus , Animales , Sitios de Unión , Proteínas de la Cápside/química , Línea Celular , Citometría de Flujo , Glucolípidos/química , Glucolípidos/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Mutagénesis Sitio-Dirigida , Poliomavirus/química , Poliomavirus/metabolismo , Conformación Proteica , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Difracción de Rayos X
6.
Nat Chem Biol ; 11(1): 77-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25402769

RESUMEN

The serum protein complement factor H (FH) ensures downregulation of the complement alternative pathway, a branch of innate immunity, upon interaction with specific glycans on host cell surfaces. Using ligand-based NMR, we screened a comprehensive set of sialylated glycans for binding to FH and solved the crystal structure of a ternary complex formed by the two C-terminal domains of FH, a sialylated trisaccharide and the complement C3b thioester-containing domain. Key residues in the sialic acid binding site are conserved from mice to men, and residues linked to atypical hemolytic uremic syndrome cluster within this binding site, suggesting a possible role for sialic acid as a host marker also in other mammals and a critical role in human renal complement homeostasis. Unexpectedly, the FH sialic acid binding site is structurally homologous to the binding sites of two evolutionarily unrelated proteins. The crystal structure also advances our understanding of bacterial immune evasion strategies.


Asunto(s)
Factor H de Complemento/química , Ácido N-Acetilneuramínico/química , Animales , Sitios de Unión , Secuencia de Carbohidratos , Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Vía Alternativa del Complemento/efectos de los fármacos , Secuencia Conservada , Hemólisis/efectos de los fármacos , Síndrome Hemolítico-Urémico/genética , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/farmacología , Ovinos
7.
Glycobiology ; 26(5): 532-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26715202

RESUMEN

Mammalian cell surfaces are decorated with a variety of glycan chains that orchestrate development and defense and are exploited by pathogens for cellular attachment and entry. While glycosidic linkages are, in principle, flexible, the conformational space that a given glycan can sample is subject to spatial and electrostatic restrictions imposed by its overall chemical structure. Here, we show how the glycan moiety of the GM1 ganglioside, a branched, monosialylated pentasaccharide that serves as a ligand for various proteins, undergoes differential conformational selection in its interactions with different lectins. Using STD NMR and X-ray crystallography, we found that the innate immune regulator complement Factor H (FH) binds a previously not reported GM1 conformation that is not compatible with the GM1-binding sites of other structurally characterized GM1-binding lectins such as the Simian Virus 40 (SV40) capsid. Molecular dynamics simulations of the free glycan in explicit solvent on the 10 µs timescale reveal that the FH-bound conformation nevertheless corresponds to a minimum in the Gibbs free energy plot. In contrast to the GM1 conformation recognized by SV40, the FH-bound GM1 conformation is associated with poor NOE restraints, explaining how it escaped(1)H-(1)H NOE-restrained modeling in the past and highlighting the necessity for ensemble representations of glycan structures.


Asunto(s)
Cápside/química , Factor H de Complemento/química , Gangliósido G(M1)/análogos & derivados , Simulación de Dinámica Molecular , Virus 40 de los Simios/química , Cápside/metabolismo , Factor H de Complemento/metabolismo , Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Humanos , Virus 40 de los Simios/metabolismo
8.
J Virol ; 89(12): 6364-75, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855729

RESUMEN

UNLABELLED: The human JC polyomavirus (JCPyV) establishes an asymptomatic, persistent infection in the kidneys of the majority of the population and is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunosuppressed individuals. The Mad-1 strain of JCPyV, a brain isolate, was shown earlier to require α2,6-linked sialic acid on the lactoseries tetrasaccharide c (LSTc) glycan for attachment to host cells. In contrast, a JCPyV kidney isolate type 3 strain, WT3, has been reported to interact with sialic acid-containing gangliosides, but the role of these glycans in JCPyV infection has remained unclear. To help rationalize these findings and probe the effects of strain-specific differences on receptor binding, we performed a comprehensive analysis of the glycan receptor specificities of these two representative JCPyV strains using high-resolution X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, and correlated these data with the results of infectivity assays. We show here that capsid proteins of Mad-1 and WT3 JCPyV can both engage LSTc as well as multiple sialylated gangliosides. However, the binding affinities exhibit subtle differences, with the highest affinity observed for LSTc. Engagement of LSTc is a prerequisite for functional receptor engagement, while the more weakly binding gangliosides are not required for productive infection. Our findings highlight the complexity of virus-carbohydrate interactions and demonstrate that subtle differences in binding affinities, rather than the binding event alone, help determine tissue tropism and viral pathogenesis. IMPORTANCE: Viral infection is initiated by attachment to receptors on host cells, and this event plays an important role in viral disease. We investigated the receptor-binding properties of human JC polyomavirus (JCPyV), a virus that resides in the kidneys of the majority of the population and can cause the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in the brains of immunosuppressed individuals. JCPyV has been reported to interact with multiple carbohydrate receptors, and we sought to clarify how the interactions between JCPyV and cellular carbohydrate receptors influenced infection. Here we demonstrate that JCPyV can engage numerous sialylated carbohydrate receptors. However, the virus displays preferential binding to LSTc, and only LSTc mediates a productive infection. Our findings demonstrate that subtle differences in binding affinity, rather than receptor engagement alone, are a key determinant of viral infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus JC/fisiología , Polisacáridos/metabolismo , Receptores Virales/metabolismo , Ácidos Siálicos/metabolismo , Acoplamiento Viral , Animales , Proteínas de la Cápside/química , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Receptores Virales/química
9.
J Virol ; 88(18): 10831-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008942

RESUMEN

UNLABELLED: Human polyomavirus 6 (HPyV6) and HPyV7 are commonly found on human skin. We have determined the X-ray structures of their major capsid protein, VP1, at resolutions of 1.8 and 1.7 Å, respectively. In polyomaviruses, VP1 commonly determines antigenicity as well as cell-surface receptor specificity, and the protein is therefore linked to attachment, tropism, and ultimately, viral pathogenicity. The structures of HPyV6 and HPyV7 VP1 reveal uniquely elongated loops that cover the bulk of the outer virion surfaces, obstructing a groove that binds sialylated glycan receptors in many other polyomaviruses. In support of this structural observation, interactions of VP1 with α2,3- and α2,6-linked sialic acids could not be detected in solution by nuclear magnetic resonance spectroscopy. Single-cell binding studies indicate that sialylated glycans are likely not required for initial attachment to cultured human cells. Our findings establish distinct antigenic properties of HPyV6 and HPyV7 capsids and indicate that these two viruses engage nonsialylated receptors. IMPORTANCE: Eleven new human polyomaviruses, including the skin viruses HPyV6 and HPyV7, have been identified during the last decade. In contrast to better-studied polyomaviruses, the routes of infection, cell tropism, and entry pathways of many of these new viruses remain largely mysterious. Our high-resolution X-ray structures of major capsid proteins VP1 from HPyV6 and from HPyV7 reveal critical differences in surface morphology from those of all other known polyomavirus structures. A groove that engages specific sialic acid-containing glycan receptors in related polyomaviruses is obstructed, and VP1 of HPyV6 and HPyV7 does not interact with sialylated compounds in solution or on cultured human cells. A comprehensive comparison with other structurally characterized polyomavirus VP1 proteins enhances our understanding of molecular determinants that underlie receptor specificity, antigenicity, and, ultimately, pathogenicity within the polyomavirus family and highlight the need for structure-based analysis to better define phylogenetic relationships within the growing polyomavirus family and perhaps also for other viruses.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Infecciones por Polyomavirus/metabolismo , Poliomavirus/metabolismo , Receptores Virales/metabolismo , Ácidos Siálicos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Poliomavirus/química , Poliomavirus/genética , Infecciones por Polyomavirus/virología , Unión Proteica , Alineación de Secuencia
10.
PLoS Pathog ; 9(10): e1003688, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130487

RESUMEN

Viruses within a family often vary in their cellular tropism and pathogenicity. In many cases, these variations are due to viruses switching their specificity from one cell surface receptor to another. The structural requirements that underlie such receptor switching are not well understood especially for carbohydrate-binding viruses, as methods capable of structure-specificity studies are only relatively recently being developed for carbohydrates. We have characterized the receptor specificity, structure and infectivity of the human polyomavirus BKPyV, the causative agent of polyomavirus-associated nephropathy, and uncover a molecular switch for binding different carbohydrate receptors. We show that the b-series gangliosides GD3, GD2, GD1b and GT1b all can serve as receptors for BKPyV. The crystal structure of the BKPyV capsid protein VP1 in complex with GD3 reveals contacts with two sialic acid moieties in the receptor, providing a basis for the observed specificity. Comparison with the structure of simian virus 40 (SV40) VP1 bound to ganglioside GM1 identifies the amino acid at position 68 as a determinant of specificity. Mutation of this residue from lysine in BKPyV to serine in SV40 switches the receptor specificity of BKPyV from GD3 to GM1 both in vitro and in cell culture. Our findings highlight the plasticity of viral receptor binding sites and form a template to retarget viruses to different receptors and cell types.


Asunto(s)
Virus BK/metabolismo , Proteínas de la Cápside/metabolismo , Gangliósidos/metabolismo , Mutación , Infecciones por Polyomavirus/metabolismo , Receptores Virales/metabolismo , Virus BK/química , Virus BK/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Gangliósidos/química , Gangliósidos/genética , Células HEK293 , Humanos , Infecciones por Polyomavirus/genética , Estructura Terciaria de Proteína , Receptores Virales/química , Receptores Virales/genética , Virus 40 de los Simios/química , Virus 40 de los Simios/genética , Virus 40 de los Simios/metabolismo
11.
J Struct Biol ; 186(1): 112-21, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24556575

RESUMEN

The BAK1-interacting receptor-like kinase 2 (BIR2) belongs to the large family of leucine-rich repeat receptor-like kinases (LRR-RLKs) that mediate development and innate immunity in plants and form a monophyletic gene family with the Drosophila Pelle and human interleukin-1 receptor-associated kinases (IRAK). BIR2 is a negative regulator of BAK1-mediated defense mechanisms and cell death responses, yet key residues that are typically required for kinase activity are not present in the BIR2 kinase domain. We have determined the crystal structure of the BIR2 cytosolic domain and show that its nucleotide binding site is occluded. NMR spectroscopy confirmed that neither wild type nor phosphorylation-mimicking mutants of BIR2 bind ATP-analogues in solution, suggesting that BIR2 is a genuine enzymatically inactive pseudokinase. BIR2 is, however, phosphorylated by its target of regulation, BAK1. Using nano LC-MS/MS analysis for site-specific analysis of phosphorylation, we found a high density of BAK1-transphosphorylation sites in the BIR2 juxta membrane domain, a region previously implicated in regulation of RLKs. Our findings provide a structural basis to better understand signaling through kinase-dead domains that are predicted to account for 20% of all Arabidopsis RLKs and 10% of all human kinases.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Arabidopsis , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Adenilil Imidodifosfato/química , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Inmunidad de la Planta , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Estructura Secundaria de Proteína , Transducción de Señal , Homología Estructural de Proteína
12.
PLoS Pathog ; 8(12): e1003078, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23236285

RESUMEN

Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.


Asunto(s)
Gangliosidosis GM2/metabolismo , Orthoreovirus de los Mamíferos/metabolismo , Receptores Virales/metabolismo , Infecciones por Reoviridae/metabolismo , Proteínas Virales/metabolismo , Animales , Cricetinae , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Embrión de Mamíferos/virología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Gangliosidosis GM2/genética , Células L , Ratones , Mutación , Orthoreovirus de los Mamíferos/genética , Estructura Terciaria de Proteína , Receptores Virales/genética , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/patología , Proteínas Virales/genética
13.
PLoS Pathog ; 8(7): e1002738, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22910713

RESUMEN

The recently discovered human Merkel cell polyomavirus (MCPyV or MCV) causes the aggressive Merkel cell carcinoma (MCC) in the skin of immunocompromised individuals. Conflicting reports suggest that cellular glycans containing sialic acid (Neu5Ac) may play a role in MCPyV infectious entry. To address this question, we solved X-ray structures of the MCPyV major capsid protein VP1 both alone and in complex with several sialylated oligosaccharides. A shallow binding site on the apical surface of the VP1 capsomer recognizes the disaccharide Neu5Ac-α2,3-Gal through a complex network of interactions. MCPyV engages Neu5Ac in an orientation and with contacts that differ markedly from those observed in other polyomavirus complexes with sialylated receptors. Mutations in the Neu5Ac binding site abolish MCPyV infection, highlighting the relevance of the Neu5Ac interaction for MCPyV entry. Our study thus provides a powerful platform for the development of MCPyV-specific vaccines and antivirals. Interestingly, engagement of sialic acid does not interfere with initial attachment of MCPyV to cells, consistent with a previous proposal that attachment is mediated by a class of non-sialylated carbohydrates called glycosaminoglycans. Our results therefore suggest a model in which sialylated glycans serve as secondary, post-attachment co-receptors during MCPyV infectious entry. Since cell-surface glycans typically serve as primary attachment receptors for many viruses, we identify here a new role for glycans in mediating, and perhaps even modulating, post-attachment entry processes.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Glicosaminoglicanos/metabolismo , Poliomavirus de Células de Merkel/química , Poliomavirus de Células de Merkel/fisiología , Ácido N-Acetilneuramínico/metabolismo , Sitios de Unión , Proteínas de la Cápside/genética , Línea Celular , Cristalografía por Rayos X , ADN Viral/genética , Mapeo Epitopo , Glicosaminoglicanos/química , Humanos , Poliomavirus de Células de Merkel/genética , Modelos Moleculares , Mutación , Oligosacáridos/química , Oligosacáridos/metabolismo , Infecciones por Polyomavirus/virología , Conformación Proteica , Receptores Virales/metabolismo , Acoplamiento Viral , Internalización del Virus
14.
Nucleic Acids Res ; 40(7): 3042-55, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22156376

RESUMEN

Oligonucleotides as short as 6 nt in length have been shown to bind specifically and tightly to proteins and affect their biological function. Yet, sparse structural data are available for corresponding complexes. Employing a recently developed hexanucleotide array, we identified hexadeoxyribonucleotides that bind specifically to the 3C protease of hepatitis A virus (HAV 3C(pro)). Inhibition assays in vitro identified the hexanucleotide 5'-GGGGGT-3' (G(5)T) as a 3C(pro) protease inhibitor. Using (1)H NMR spectroscopy, G(5)T was found to form a G-quadruplex, which might be considered as a minimal aptamer. With the help of (1)H, (15)N-HSQC experiments the binding site for G(5)T was located to the C-terminal ß-barrel of HAV 3C(pro). Importantly, the highly conserved KFRDI motif, which has previously been identified as putative viral RNA binding site, is not part of the G(5)T-binding site, nor does G(5)T interfere with the binding of viral RNA. Our findings demonstrate that sequence-specific nucleic acid-protein interactions occur with oligonucleotides as small as hexanucleotides and suggest that these compounds may be of pharmaceutical relevance.


Asunto(s)
Cisteína Endopeptidasas/química , Desoxirribonucleótidos/química , Virus de la Hepatitis A/enzimología , Proteínas Virales/química , Proteasas Virales 3C , Antivirales/química , Sitios de Unión , Cisteína Endopeptidasas/metabolismo , Desoxirribonucleótidos/metabolismo , Dimerización , G-Cuádruplex , Resonancia Magnética Nuclear Biomolecular , ARN Viral/metabolismo , Proteínas Virales/metabolismo
15.
J Exp Med ; 204(10): 2277-83, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17893204

RESUMEN

Nearly 50 million people worldwide suffer from age-related macular degeneration (AMD), which causes severe loss of central vision. A single-nucleotide polymorphism in the gene for the complement regulator factor H (FH), which causes a Tyr-to-His substitution at position 402, is linked to approximately 50% of attributable risks for AMD. We present the crystal structure of the region of FH containing the polymorphic amino acid His402 in complex with an analogue of the glycosaminoglycans (GAGs) that localize the complement regulator on the cell surface. The structure demonstrates direct coordination of ligand by the disease-associated polymorphic residue, providing a molecular explanation of the genetic observation. This glycan-binding site occupies the center of an extended interaction groove on the regulator's surface, implying multivalent binding of sulfated GAGs. This finding is confirmed by structure-based site-directed mutagenesis, nuclear magnetic resonance-monitored binding experiments performed for both H402 and Y402 variants with this and another model GAG, and analysis of an extended GAG-FH complex.


Asunto(s)
Envejecimiento/fisiología , Factor H de Complemento/química , Factor H de Complemento/metabolismo , Sitios de Unión , Factor H de Complemento/genética , Cristalografía por Rayos X , Productos del Gen gag/química , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Ligandos , Modelos Moleculares , Mutación/genética , Polisacáridos/química , Polisacáridos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Sacarosa/análogos & derivados , Sacarosa/química , Sacarosa/metabolismo , Propiedades de Superficie
16.
Biochemistry ; 51(9): 1874-84, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22320225

RESUMEN

Numerous complement factor H (FH) mutations predispose patients to atypical hemolytic uremic syndrome (aHUS) and other disorders arising from inadequately regulated complement activation. No unifying structural or mechanistic consequences have been ascribed to these mutants beyond impaired self-cell protection. The S1191L and V1197A mutations toward the C-terminus of FH, which occur in patients singly or together, arose from gene conversion between CFH encoding FH and CFHR1 encoding FH-related 1. We show that neither single nor double mutations structurally perturbed recombinant proteins consisting of the FH C-terminal modules, 19 and 20 (FH19-20), although all three FH19-20 mutants were poor, compared to wild-type FH19-20, at promoting hemolysis of C3b-coated erythrocytes through competition with full-length FH. Indeed, our new crystal structure of the S1191L mutant of FH19-20 complexed with an activation-specific complement fragment, C3d, was nearly identical to that of the wild-type FH19-20:C3d complex, consistent with mutants binding to C3b with wild-type-like affinity. The S1191L mutation enhanced thermal stability of module 20, whereas the V1197A mutation dramatically decreased it. Thus, although mutant proteins were folded at 37 °C, they differ in conformational rigidity. Neither single substitutions nor double substitutions increased measurably the extent of FH19-20 self-association, nor did these mutations significantly affect the affinity of FH19-20 for three glycosaminoglycans, despite critical roles of module 20 in recognizing polyanionic self-surface markers. Unexpectedly, FH19-20 mutants containing Leu1191 self-associated on a heparin-coated surface to a higher degree than on surfaces coated with dermatan or chondroitin sulfates. Thus, potentially disease-related functional distinctions between mutants, and between FH and FH-related 1, may manifest in the presence of specific glycosaminoglycans.


Asunto(s)
Factor H de Complemento/química , Factor H de Complemento/genética , Conversión Génica , Complemento C3b/química , Complemento C3d/química , Factor H de Complemento/metabolismo , Cristalografía por Rayos X , Humanos , Mutación , Pichia/genética , Pichia/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Temperatura
17.
J Immunol ; 182(11): 7009-18, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19454698

RESUMEN

Factor H (fH) is essential for complement homeostasis in fluid-phase and on surfaces. Its two C-terminal domains (CCP 19-20) anchor fH to self-surfaces where it prevents C3b amplification in a process requiring its N-terminal four domains. In atypical hemolytic uremic syndrome (aHUS), mutations clustering toward the C terminus of fH may disrupt interactions with surface-associated C3b or polyanions and thereby diminish the ability of fH to regulate complement. To test this, we compared a recombinant protein encompassing CCP 19-20 with 16 mutants. The mutations had only very limited and localized effects on protein structure. Although we found four aHUS-linked fH mutations that decreased binding to C3b and/or to heparin (a model compound for cell surface polyanionic carbohydrates), we identified five aHUS-associated mutants with increased affinity for either or both ligands. Strikingly, these variable affinities for the individual ligands did not correlate with the extent to which all the aHUS-associated mutants were found to be impaired in a more physiological assay that measured their ability to inhibit cell surface complement functions of full-length fH. Taken together, our data suggest that disruption of a complex fH-self-surface recognition process, involving a balance of affinities for protein and physiological carbohydrate ligands, predisposes to aHUS.


Asunto(s)
Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Eritrocitos/inmunología , Síndrome Hemolítico-Urémico/genética , Heparina/metabolismo , Mutación , Animales , Células Cultivadas , Factor H de Complemento/genética , Eritrocitos/patología , Predisposición Genética a la Enfermedad , Síndrome Hemolítico-Urémico/inmunología , Síndrome Hemolítico-Urémico/patología , Humanos , Polielectrolitos , Polímeros/metabolismo , Unión Proteica/genética , Ovinos
18.
Biochemistry ; 49(49): 10486-95, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21062008

RESUMEN

Human ß-defensin 2 (HBD2) is a member of the defensin family of antimicrobial peptides that plays important roles in the innate and adaptive immune system of both vertebrates and invertebrates. In addition to their direct bactericidal action, defensins are also involved in chemotaxis and Toll-like receptor activation. In analogy to chemokine/glycosaminoglycan (GAG) interactions, GAG-defensin complexes are likely to play an important role in chemotaxis and in presenting defensins to their receptors. Using a gel mobility shift assay, we found that HBD2 bound to a range of GAGs including heparin/heparan sulfate (HS), dermatan sulfate (DS), and chondroitin sulfate. We used NMR spectroscopy of (15)N-labeled HBD2 to map the binding sites for two GAG model compounds, a heparin/HS pentasaccharide (fondaparinux sodium; FX) and enzymatically prepared DS hexasaccharide (DSdp6). We identified a number of basic amino acids that form a common ligand binding site, which indicated that these interactions are predominantly electrostatic. The dissociation constant of the [DSdp6-HBD2] complex was determined by NMR spectroscopy to be 5 ± 5 µM. Binding of FX could not be quantified because of slow exchange on the NMR chemical shift time scale. FX was found to induce HBD2 dimerization as evidenced by the analysis of diffusion coefficients, (15)N relaxation, and nESI-MS measurements. The formation of FX-bridged HBD2 dimers exhibited features of a cooperative binding mechanism. In contrast, the complex with DSdp6 was found to be mostly monomeric.


Asunto(s)
Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , beta-Defensinas/química , beta-Defensinas/metabolismo , Sitios de Unión/fisiología , Quimiotaxis de Leucocito/fisiología , Humanos , Espectroscopía de Resonancia Magnética , Oligosacáridos/química , Oligosacáridos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Electricidad Estática , Sulfatos/química , Sulfatos/metabolismo
19.
J Am Chem Soc ; 132(18): 6374-81, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20394361

RESUMEN

We have used the interaction between module 7 of complement factor H (CFH approximately 7) and a fully sulfated heparin tetrasaccharide to exemplify a new approach for studying contributions of basic side chains to the formation of glycosaminoglycan (GAG)-protein complexes. We first employed HISQC and H(2)CN NMR experiments to monitor the side-chain resonances of lysines and arginines in (15)N, (13)C-labeled protein during titrations with a fully sulfated heparin tetrasaccharide under physiological conditions. Under identical conditions and using (15)N-labeled protein, we then cross-linked tetrasaccharide to CFH approximately 7 and confirmed the 1:1 stoichiometry by FT-ICR-MS. We subsequently characterized this covalent protein-GAG conjugate by NMR and further MS techniques. MALDI-TOF MS identified protein fragments obtained via trypsin digestion or chemical fragmentation, yielding information concerning the site of GAG attachment. Combining MS and NMR data allowed us to identify the side chain of K405 as the point of attachment of the cross-linked heparin oligosaccharide to CFH approximately 7. On the basis of the analysis of NMR and MS data of the noncovalent and cross-linked CFH approximately 7-tetrasaccharide complexes, we conclude that the K446 side chain is not essential for binding the tetrasaccharide, despite the large chemical shift perturbations of its backbone amide (15)N and (1)H resonances during titrations. We show that R444 provides the most important charge-charge interaction within a C-terminal heparin-binding subsite of CFH approximately 7 whereas side chains of R404, K405, and K388 are the predominant contributors to an N-terminal binding subsite located in the immediate vicinity of residue 402, which is implicated in age-related macular degeneration (AMD).


Asunto(s)
Arginina/química , Factor H de Complemento/química , Factor H de Complemento/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Heparina/metabolismo , Lisina/química , Espectrometría de Masas , Secuencia de Aminoácidos , Heparina/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Soluciones , Tripsina/metabolismo
20.
J Immunol ; 181(4): 2610-9, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18684951

RESUMEN

Human complement factor H, consisting of 20 complement control protein (CCP) modules, is an abundant plasma glycoprotein. It prevents C3b amplification on self surfaces bearing certain polyanionic carbohydrates, while complement activation progresses on most other, mainly foreign, surfaces. Herein, locations of binding sites for polyanions and C3b are reexamined rigorously by overexpressing factor H segments, structural validation, and binding assays. As anticipated, constructs corresponding to CCPs 7-8 and 19-20 bind well in heparin-affinity chromatography. However, CCPs 8-9, previously reported to bind glycosaminoglycans, bind neither to heparin resin nor to heparin fragments in gel-mobility shift assays. Introduction of nonnative residues N-terminal to a construct containing CCPs 8-9, identical to those in proteins used in the previous report, converted this module pair to an artificially heparin-binding one. The module pair CCPs 12-13 does not bind heparin appreciably, notwithstanding previous suggestions to the contrary. We further checked CCPs 10-12, 11-14, 13-15, 10-15, and 8-15 for ability to bind heparin but found very low affinity or none. As expected, constructs corresponding to CCPs 1-4 and 19-20 bind C3b amine coupled to a CM5 chip (K(d)s of 14 and 3.5 microM, respectively) or a C1 chip (K(d)s of 10 and 4.5 microM, respectively). Constructs CCPs 7-8 and 6-8 exhibit measurable affinities for C3b according to surface plasmon resonance, although they are weak compared with CCPs 19-20. Contrary to expectations, none of several constructs encompassing modules from CCP 9 to 15 exhibited significant C3b binding in this assay. Thus, we propose a new functional map of factor H.


Asunto(s)
Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Glicosaminoglicanos/metabolismo , Sitios de Unión/inmunología , Cromatografía de Afinidad , Complemento C3b/química , Factor H de Complemento/química , Factor H de Complemento/genética , Vía Alternativa del Complemento/inmunología , Proteínas del Sistema Complemento/química , Proteínas del Sistema Complemento/metabolismo , Glicosaminoglicanos/biosíntesis , Glicosaminoglicanos/genética , Heparina/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Mapeo Peptídico , Polielectrolitos , Polímeros/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA