Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 18(8): 1449-63, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19181682

RESUMEN

Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of human chromosome 21 (Hsa21). Recently, O'Doherty et al. [An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309 (2005) 2033-2037] generated a trans-species aneuploid mouse line (Tc1) that carries an almost complete Hsa21. The Tc1 mouse is the most complete animal model for DS currently available. Tc1 mice show many features that relate to human DS, including alterations in memory, synaptic plasticity, cerebellar neuronal number, heart development and mandible size. Because motor deficits are one of the most frequently occurring features of DS, we have undertaken a detailed analysis of motor behaviour in cerebellum-dependent learning tasks that require high motor coordination and balance. In addition, basic electrophysiological properties of cerebellar circuitry and synaptic plasticity have been investigated. Our results reveal that, compared with controls, Tc1 mice exhibit a higher spontaneous locomotor activity, a reduced ability to habituate to their environments, a different gait and major deficits on several measures of motor coordination and balance in the rota rod and static rod tests. Moreover, cerebellar long-term depression is essentially normal in Tc1 mice, with only a slight difference in time course. Our observations provide further evidence that support the validity of the Tc1 mouse as a model for DS, which will help us to provide insights into the causal factors responsible for motor deficits observed in persons with DS.


Asunto(s)
Síndrome de Down/fisiopatología , Desempeño Psicomotor , Animales , Cerebelo/fisiología , Síndrome de Down/genética , Femenino , Marcha , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Fuerza Muscular , Plasticidad Neuronal
2.
Learn Mem ; 16(10): 635-44, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19794189

RESUMEN

The NMDA receptor (NMDAR) subunit GluN1 is an obligatory component of NMDARs without a known functional homolog and is expressed in almost every neuronal cell type. The NMDAR system is a coincidence detector with critical roles in spatial learning and synaptic plasticity. Its coincidence detection property is crucial for the induction of hippocampal long-term potentiation (LTP). We have generated a mutant mouse model expressing a hypomorph of the Grin1(N598R) allele, which leads to a minority (about 10%) of coincidence detection-impaired NMDARs. Surprisingly, these animals revealed specific functional changes in the dentate gyrus (DG) of the hippocampal formation. Early LTP was expressed normally in area CA1 in vivo, but was completely suppressed at perforant path-granule cell synapses in the DG. In addition, there was a pronounced reduction in the amplitude of the evoked population spike in the DG. These specific changes were accompanied by behavioral impairments in spatial recognition, spatial learning, reversal learning, and retention. Our data show that minor changes in GluN1-dependent NMDAR physiology can cause dramatic consequences in synaptic signaling in a subregion-specific fashion despite the nonredundant nature of the GluN1 gene and its global expression.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Western Blotting , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Mutantes , Mutación , Plasticidad Neuronal/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de N-Metil-D-Aspartato/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Learn Mem ; 15(7): 492-500, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18626093

RESUMEN

Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synaptic plasticity in Tc1 mice. Here we show that Tc1 mice have impaired spatial working memory (WM) but spared long-term spatial reference memory (RM) in the Morris watermaze. Similarly, Tc1 mice are selectively impaired in short-term memory (STM) but have intact long-term memory (LTM) in the novel object recognition task. The pattern of impaired STM and normal LTM is paralleled by a corresponding phenotype in long-term potentiation (LTP). Freely-moving Tc1 mice exhibit reduced LTP 1 h after induction but normal maintenance over days in the dentate gyrus of the hippocampal formation. Biochemical analysis revealed a reduction in membrane surface expression of the AMPAR (alpha-amino-3-hydroxy-5-methyl-4-propionic acid receptor) subunit GluR1 in the hippocampus of Tc1 mice, suggesting a potential mechanism for the impairment in early LTP. Our observations also provide further evidence that STM and LTM for hippocampus-dependent tasks are subserved by parallel processing streams.


Asunto(s)
Síndrome de Down , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Plasticidad Neuronal/fisiología , Análisis de Varianza , Animales , Cromosomas Humanos Par 21 , Aprendizaje Discriminativo/fisiología , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/patología , Síndrome de Down/fisiopatología , Electrofisiología , Conducta Exploratoria/fisiología , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Humanos , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Patrones de Reconocimiento Fisiológico/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Conducta Espacial/fisiología , Trisomía
4.
Neuron ; 38(5): 797-804, 2003 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-12797963

RESUMEN

The mechanisms by which long-term potentiation (LTP) is expressed are controversial, with evidence for both presynaptic and postsynaptic involvement. We have used confocal microscopy and Ca(2+)-sensitive dyes to study LTP at individual visualized synapses. Synaptically evoked Ca(2+) transients were imaged in distal dendritic spines of pyramidal cells in cultured hippocampal slices, before and after the induction of LTP. At most synapses, from as early as 10 min to at least 60 min after induction, LTP was associated with an increase in the probability of a single stimulus evoking a postsynaptic Ca(2+) response. These observations provide compelling evidence of a presynaptic component to the expression of early LTP at Schaffer-associational synapses. In most cases, the store-dependent evoked Ca(2+) transient in the spine was also increased after induction, a novel postsynaptic aspect of LTP.


Asunto(s)
Señalización del Calcio/fisiología , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Terminales Presinápticos/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Estimulación Eléctrica , Procesamiento Automatizado de Datos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Deficiencia de Magnesio/metabolismo , Masculino , Microscopía Confocal , Neurotransmisores/metabolismo , Técnicas de Cultivo de Órganos , Terminales Presinápticos/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
5.
J Neurosci ; 22(5): 1532-40, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11880483

RESUMEN

Brain-derived neurotrophic factor (BDNF) is implicated in long-term synaptic plasticity in the adult hippocampus, but the cellular mechanisms are little understood. Here we used intrahippocampal microinfusion of BDNF to trigger long-term potentiation (BDNF-LTP) at medial perforant path--granule cell synapses in vivo. BDNF infusion led to rapid phosphorylation of the mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated protein kinase) and p38 but not JNK (c-Jun N-terminal protein kinase). These effects were restricted to the infused dentate gyrus; no changes were observed in microdissected CA3 and CA1 regions. Local infusion of MEK (MAP kinase kinase) inhibitors (PD98059 and U0126) during BDNF delivery abolished BDNF-LTP and the associated ERK activation. Application of MEK inhibitor during established BDNF-LTP had no effect. Activation of MEK-ERK is therefore required for the induction, but not the maintenance, of BDNF-LTP. BDNF-LTP was further coupled to ERK-dependent phosphorylation of the transcription factor cAMP response element-binding protein. Finally, we investigated the expression of two immediate early genes, activity-regulated cytoskeleton-associated protein (Arc) and Zif268, both of which are required for generation of late, mRNA synthesis-dependent LTP. BDNF infusion resulted in selective upregulation of mRNA and protein for Arc. In situ hybridization showed that Arc transcripts are rapidly and extensively delivered to granule cell dendrites. U0126 blocked Arc upregulation in parallel with BDNF-LTP. The results support a model in which BDNF triggers long-lasting synaptic strengthening through MEK-ERK and selective induction of the dendritic mRNA species Arc.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/metabolismo , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Hipocampo/fisiología , Hibridación in Situ , Proteínas Quinasas JNK Activadas por Mitógenos , Potenciación a Largo Plazo/fisiología , Masculino , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos
6.
Clinics (Sao Paulo) ; 66 Suppl 1: 3-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21779718

RESUMEN

Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.


Asunto(s)
Enfermedades del Sistema Nervioso Central/terapia , Estimulación Eléctrica/métodos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Estimulación Luminosa/métodos , Animales , Enfermedades del Sistema Nervioso Central/fisiopatología , Humanos
7.
Clinics ; 66(supl.1): 3-17, 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-593144

RESUMEN

Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.


Asunto(s)
Animales , Humanos , Enfermedades del Sistema Nervioso Central/terapia , Estimulación Eléctrica/métodos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Estimulación Luminosa/métodos , Enfermedades del Sistema Nervioso Central/fisiopatología
8.
J Physiol ; 574(Pt 3): 805-18, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16728448

RESUMEN

Autophosphorylation of alpha-Ca2+/calmodulin kinase II (alphaCaMKII) at Thr286 is thought to be a general effector mechanism for sustaining transcription-independent long-term potentiation (LTP) at pathways where LTP is NMDA receptor-dependent. We have compared LTP at two such hippocampal pathways in mutant mice with a disabling point mutation at the Thr286 autophosphorylation site. We find that autophosphorylation of alphaCaMKII is essential for induction of LTP at Schaffer commissural-CA1 synapses in vivo, but is not required for LTP that can be sustained over days at medial perforant path-granule cell synapses in awake mice. At these latter synapses LTP is supported by cyclic AMP-dependent signalling in the absence of alphaCaMKII signalling. Thus, the autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Sustitución de Aminoácidos , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
9.
Science ; 309(5743): 2033-7, 2005 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-16179473

RESUMEN

Aneuploidies are common chromosomal defects that result in growth and developmental deficits and high levels of lethality in humans. To gain insight into the biology of aneuploidies, we manipulated mouse embryonic stem cells and generated a trans-species aneuploid mouse line that stably transmits a freely segregating, almost complete human chromosome 21 (Hsa21). This "transchromosomic" mouse line, Tc1, is a model of trisomy 21, which manifests as Down syndrome (DS) in humans, and has phenotypic alterations in behavior, synaptic plasticity, cerebellar neuronal number, heart development, and mandible size that relate to human DS. Transchromosomic mouse lines such as Tc1 may represent useful genetic tools for dissecting other human aneuploidies.


Asunto(s)
Aneuploidia , Cromosomas Humanos Par 21 , Modelos Animales de Enfermedad , Síndrome de Down , Ingeniería Genética , Ratones Transgénicos , Animales , Conducta Animal , Encéfalo/patología , Recuento de Células , Línea Celular , Quimera , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Embrión de Mamíferos/citología , Huesos Faciales/patología , Femenino , Expresión Génica , Marcadores Genéticos , Cardiopatías Congénitas/embriología , Hipocampo/fisiopatología , Humanos , Potenciación a Largo Plazo , Activación de Linfocitos , Masculino , Aprendizaje por Laberinto , Memoria , Ratones , Ratones Endogámicos , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Cráneo/patología , Células Madre , Transmisión Sináptica , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA