Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(47): e2306357120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38150462

RESUMEN

Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.


Asunto(s)
Ecosistema , Cadena Alimentaria , Conducta Predatoria , Animales , Océano Atlántico , Biomasa
2.
Nature ; 572(7770): 461-466, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31340216

RESUMEN

Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.


Asunto(s)
Migración Animal , Explotaciones Pesqueras/estadística & datos numéricos , Mapeo Geográfico , Océanos y Mares , Tiburones/fisiología , Análisis Espacio-Temporal , Animales , Densidad de Población , Medición de Riesgo , Tiburones/clasificación , Navíos , Factores de Tiempo
3.
J Exp Biol ; 226(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36728637

RESUMEN

Tuna are known for exceptional swimming speeds, which are possible because of their thunniform lift-based propulsion, large muscle mass and rigid fusiform body. A rigid body should restrict maneuverability with regard to turn radius and turn rate. To test if turning maneuvers by the Pacific bluefin tuna (Thunnus orientalis) are constrained by rigidity, captive animals were videorecorded overhead as the animals routinely swam around a large circular tank or during feeding bouts. Turning performance was classified into three different types: (1) glide turns, where the tuna uses the caudal fin as a rudder; (2) powered turns, where the animal uses continuous near symmetrical strokes of the caudal fin through the turn; and (3) ratchet turns, where the overall global turn is completed by a series of small local turns by asymmetrical stokes of the caudal fin. Individual points of the rostrum, peduncle and tip of the caudal fin were tracked and analyzed. Frame-by-frame analysis showed that the ratchet turn had the fastest turn rate for all points with a maximum of 302 deg s-1. During the ratchet turn, the rostrum exhibited a minimum global 0.38 body length turn radius. The local turn radii were only 18.6% of the global ratchet turn. The minimum turn radii ranged from 0.4 to 1.7 body lengths. Compared with the performance of other swimmers, the increased flexion of the peduncle and tail and the mechanics of turning behaviors used by tuna overcomes any constraints to turning performance from the rigidity of the anterior body morphology.


Asunto(s)
Músculos , Atún , Animales , Atún/fisiología , Natación/fisiología
6.
Proc Biol Sci ; 288(1956): 20210671, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34344182

RESUMEN

Animal migrations track predictable seasonal patterns of resource availability and suitable thermal habitat. As climate change alters this 'energy landscape', some migratory species may struggle to adapt. We examined how climate variability influences movements, thermal habitat selection and energy intake by juvenile Pacific bluefin tuna (Thunnus orientalis) during seasonal foraging migrations in the California Current. We tracked 242 tuna across 15 years (2002-2016) with high-resolution archival tags, estimating their daily energy intake via abdominal warming associated with digestion (the 'heat increment of feeding'). The poleward extent of foraging migrations was flexible in response to climate variability, allowing tuna to track poleward displacements of thermal habitat where their standard metabolic rates were minimized. During a marine heatwave that saw temperature anomalies of up to +2.5°C in the California Current, spatially explicit energy intake by tuna was approximately 15% lower than average. However, by shifting their mean seasonal migration approximately 900 km poleward, tuna remained in waters within their optimal temperature range and increased their energy intake. Our findings illustrate how tradeoffs between physiology and prey availability structure migration in a highly mobile vertebrate, and suggest that flexible migration strategies can buffer animals against energetic costs associated with climate variability and change.


Asunto(s)
Migración Animal , Atún , Animales , Cambio Climático , Ecosistema , Temperatura
7.
BMC Genomics ; 21(1): 642, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32942994

RESUMEN

BACKGROUND: The Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles. RESULTS: Here, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation. CONCLUSIONS: We find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the atrium associated with the higher expression of SERCA2b compared to the ventricle. We find no evidence that genes associated with thermogenesis are upregulated in the deep, warm muscle compared to superficial, cool muscle. Heat generation may be enabled by by the high aerobic capacity of bluefin tuna red muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Miocardio/metabolismo , Transcriptoma , Atún/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Especificidad de Órganos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Termogénesis , Atún/metabolismo
8.
Mol Biol Evol ; 36(1): 84-96, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30364966

RESUMEN

Birds, mammals, and certain fishes, including tunas, opahs and lamnid sharks, are endothermic, conserving internally generated, metabolic heat to maintain body or tissue temperatures above that of the environment. Bluefin tunas are commercially important fishes worldwide, and some populations are threatened. They are renowned for their endothermy, maintaining elevated temperatures of the oxidative locomotor muscle, viscera, brain and eyes, and occupying cold, productive high-latitude waters. Less cold-tolerant tunas, such as yellowfin tuna, by contrast, remain in warm-temperate to tropical waters year-round, reproducing more rapidly than most temperate bluefin tuna populations, providing resiliency in the face of large-scale industrial fisheries. Despite the importance of these traits to not only fisheries but also habitat utilization and responses to climate change, little is known of the genetic processes underlying the diversification of tunas. In collecting and analyzing sequence data across 29,556 genes, we found that parallel selection on standing genetic variation is associated with the evolution of endothermy in bluefin tunas. This includes two shared substitutions in genes encoding glycerol-3 phosphate dehydrogenase, an enzyme that contributes to thermogenesis in bumblebees and mammals, as well as four genes involved in the Krebs cycle, oxidative phosphorylation, ß-oxidation, and superoxide removal. Using phylogenetic techniques, we further illustrate that the eight Thunnus species are genetically distinct, but found evidence of mitochondrial genome introgression across two species. Phylogeny-based metrics highlight conservation needs for some of these species.


Asunto(s)
Evolución Biológica , Termogénesis/genética , Atún/genética , Animales , Especies en Peligro de Extinción , Genoma Mitocondrial , Hibridación Genética , Mutación , Selección Genética , Atún/metabolismo
9.
Conserv Biol ; 34(6): 1571-1578, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031635

RESUMEN

Large marine protected areas (MPAs) of unprecedented size have recently been established across the global oceans, yet their ability to meet conservation objectives is debated. Key areas of debate include uncertainty over nations' abilities to enforce fishing bans across vast, remote regions and the intensity of human impacts before and after MPA implementation. We used a recently developed vessel tracking data set (produced using Automatic Identification System detections) to quantify the response of industrial fishing fleets to 5 of the largest MPAs established in the Pacific Ocean since 2013. After their implementation, all 5 MPAs successfully kept industrial fishing effort exceptionally low. Detected fishing effort was already low in 4 of the 5 large MPAs prior to MPA implementation, particularly relative to nearby regions that did not receive formal protection. Our results suggest that these large MPAs may present major conservation opportunities in relatively intact ecosystems with low immediate impact to industrial fisheries, but the large MPAs we considered often did not significantly reduce fishing effort because baseline fishing was typically low. It is yet to be determined how large MPAs may shape global ocean conservation in the future if the footprint of human influence continues to expand. Continued improvement in understanding of how large MPAs interact with industrial fisheries is a crucial step toward defining their role in global ocean management.


Seguimiento a la Respuesta de las Flotillas de Pesca Industrial a las Grandes Áreas Marinas Protegidas Extensas Resumen Recientemente se han establecido grandes áreas marinas protegidas (AMPs) de tamaños nunca vistos en todos los océanos del mundo; sin embargo, se sigue debatiendo su habilidad para lograr los objetivos de conservación. El debate se centra en los siguientes temas importantes: la incertidumbre por la capacidad de las naciones para hacer cumplir las vedas de pesca en regiones vastas y remotas y la intensidad del impacto humano antes y después de la implementación de una AMP. Usamos un conjunto de datos de rastreo de navíos recientemente desarrollado (producido usando detecciones mediante el Sistema Automático de Identificación) para cuantificar la respuesta de las flotillas de pesca industrial ante cinco de las AMPs más grandes establecidas en el océano Pacífico desde 2013. Después de su implementación, las cinco AMPs mantuvieron exitosamente los esfuerzos de pesca industrial a niveles excepcionalmente bajos. El esfuerzo de pesca detectado ya se encontraba bajo en cuatro de las cinco grandes AMPs previo a la implementación, particularmente en relación con las regiones próximas que no reciben protección formal. Nuestros resultados sugieren que estas grandes AMPs pueden presentar oportunidades importantes de conservación en ecosistemas relativamente intactos con un impacto inmediato bajo para las pesquerías industriales, pero las grandes AMPs que consideramos con frecuencia no redujeron significativamente el esfuerzo de pesca porque la línea base de la pesca con frecuencia ya era baja. Todavía se debe determinar cómo las grandes AMPs pueden moldear la conservación mundial de los océanos en el futuro si la huella de la influencia humana continúa expandiéndose. La mejoría continua del entendimiento de cómo las grandes AMPs interactúan con las pesquerías industriales es un paso importante hacia la definición de su papel en el manejo mundial de los océanos.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Explotaciones Pesqueras , Peces , Humanos , Océanos y Mares , Océano Pacífico
10.
Environ Sci Technol ; 54(24): 15872-15882, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33238094

RESUMEN

The twilight zone contains the largest biomass of the world's ocean. Identifying its role in the trophic supply and contaminant exposure of marine megafauna constitutes a critical challenge in the context of global change. The white shark (Carcharodon carcharias) is a threatened species with some of the highest concentrations of neurotoxin methylmercury (MeHg) among marine top predators. Large white sharks migrate seasonally from coastal habitats, where they primarily forage on pinnipeds, to oceanic offshore habitats. Tagging studies suggest that while offshore, white sharks may forage at depth on mesopelagic species, yet no biochemical evidence exists. Here, we used mercury isotopic composition to assess the dietary origin of MeHg contamination in white sharks from the Northeast Pacific Ocean. We estimated that a minimum of 72% of the MeHg accumulated by white sharks originates from the consumption of mesopelagic prey, while a maximum of 25% derives from pinnipeds. In addition to highlighting the potential of mercury isotopes to decipher the complex ecological cycle of marine predators, our study provides evidence that the twilight zone constitutes a crucial foraging habitat for these large predators, which had been suspected for over a decade. Climate change is predicted to expand the production of mesopelagic MeHg and modify the mesopelagic biomass globally. Considering the pivotal role of the twilight zone is therefore essential to better predict both MeHg exposure and trophic supply to white sharks, and effectively protect these key vulnerable predators.


Asunto(s)
Mercurio , Tiburones , Animales , Ecosistema , Isótopos de Mercurio , Océano Pacífico
11.
Proc Biol Sci ; 286(1911): 20191472, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31551061

RESUMEN

The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales , Política Ambiental , Animales , Ecosistema , Geografía , Océanos y Mares
12.
J Exp Biol ; 222(Pt 21)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597731

RESUMEN

Cardiac remodeling results from both physiological and pathological stimuli. Compared with mammalian hearts, fish hearts show a broader array of remodeling changes in response to environmental influences, providing exceptional models for dissecting the molecular and cellular bases of cardiac remodeling. We recently characterized a form of pathological remodeling in juvenile pink salmon (Oncorhynchus gorbuscha) in response to crude oil exposure during embryonic cardiogenesis. In the absence of overt pathology (cardiomyocyte death or inflammatory infiltrate), cardiac ventricles in exposed fish showed altered shape, reduced thickness of compact myocardium and hypertrophic changes in spongy, trabeculated myocardium. Here, we used RNA sequencing to characterize molecular pathways underlying these defects. In juvenile ventricular cardiomyocytes, antecedent embryonic oil exposure led to dose-dependent upregulation of genes involved in innate immunity and two NKX homeobox transcription factors not previously associated with cardiomyocytes, nkx2.3 and nkx3.3 Absent from mammalian genomes, the latter is largely uncharacterized. In zebrafish embryos, nkx3.3 demonstrated a potent effect on cardiac morphogenesis, equivalent to that of nkx2.5, the primary transcription factor associated with ventricular cardiomyocyte identity. The role of nkx3.3 in heart growth is potentially linked to the unique regenerative capacity of fish and amphibians. Moreover, these findings support a cardiomyocyte-intrinsic role for innate immune response genes in pathological hypertrophy. This study demonstrates how an expanding mechanistic understanding of environmental pollution impacts - i.e. the chemical perturbation of biological systems - can ultimately yield new insights into fundamental biological processes.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Proteínas de Peces/metabolismo , Petróleo/efectos adversos , Salmón/embriología , Remodelación Ventricular/efectos de los fármacos , Pez Cebra/embriología , Animales , Embrión no Mamífero/embriología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , RNA-Seq , Regulación hacia Arriba
13.
Biol Lett ; 15(4): 20190085, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30940023

RESUMEN

Traditional forms of marine wildlife research are often restricted to coarse telemetry or surface-based observations, limiting information on fine-scale behaviours such as predator-prey events and interactions with habitat features. We use contemporary animal-attached cameras with motion sensing dataloggers, to reveal novel behaviours by white sharks, Carcharodon carcharias, within areas of kelp forest in South Africa. All white sharks tagged in this study spent time adjacent to kelp forests, with several moving throughout densely kelp-covered areas, navigating through channels and pushing directly through stipes and fronds. We found that activity and turning rates significantly increased within kelp forest. Over 28 h of video data revealed that white shark encounters with Cape fur seals, Arctocephalus pusillus pusillus, occurred exclusively within kelp forests, with seals displaying predator evasion behaviour during those encounters. Uniquely, we reveal the use of kelp forest habitat by white sharks, previously assumed inaccessible to these large predators.


Asunto(s)
Kelp , Tiburones , Animales , Ecosistema , Bosques , Conducta Predatoria , Sudáfrica
14.
Artículo en Inglés | MEDLINE | ID: mdl-30735702

RESUMEN

Bluefin tunas are highly specialized fish with unique hydrodynamic designs and physiological traits. In this study, we present results in a captive population that demonstrate strong effects of ambient temperature on the tail beat frequency and swimming speed of a pelagic fish in both pre- and post-prandial states. We measured the responses of a ram ventilator, the Pacific bluefin tuna (Thunnus orientalis), after digestion of a meal to explore the impacts of the metabolic costs of digestion on behavior and respiration. A combination of respirometry, physiological biologging of visceral temperatures, and activity monitoring with accelerometry were used to explore the metabolic costs of digestion and the impacts on ventilation and swimming speed. Experiments were conducted at temperatures that are within the metabolic optimum for Pacific bluefin tuna (17 °C), and at a second temperature corresponding to the upper distributional limit of the species in the California Current (24 °C). Warmer temperatures resulted in higher tail-beat frequency and greater elevation of body temperature in pre-prandial Pacific bluefin tuna. Specific dynamic action (SDA) events resulted in a significant postprandial increase in tail-beat frequency of ~0.2 Hz, compared to pre-prandial levels of 1.5 Hz (17 °C) and 1.75 Hz (24 °C), possibly resulting from ventilatory requirements. Data of fish exercised in a swim-tunnel respirometer suggest that the observed increase in tail-beat frequency comprise 5.5 and 6.8% of the oxygen demand during peak SDA at 24 °C and 17 °C respectively. The facultative increase in swimming speed might increase oxygen uptake at the gills to meet the increasing demand by visceral organs involved in the digestive process, potentially decreasing the available energy of each meal for other metabolic processes, such as growth, maturation, and reproduction. We hypothesize that these post-prandial behaviors allow tuna to evacuate their guts more quickly, ultimately permitting fish to feed more frequently when prey is available.


Asunto(s)
Periodo Posprandial , Temperatura , Atún/fisiología , Animales , Metabolismo Energético , Consumo de Oxígeno , Natación , Atún/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(27): 8350-5, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100889

RESUMEN

Endothermy in vertebrates has been postulated to confer physiological and ecological advantages. In endothermic fish, niche expansion into cooler waters is correlated with specific physiological traits and is hypothesized to lead to greater foraging success and increased fitness. Using the seasonal co-occurrence of three tuna species in the eastern Pacific Ocean as a model system, we used cardiac gene expression data (as a proxy for thermal tolerance to low temperatures), archival tag data, and diet analyses to examine the vertical niche expansion hypothesis for endothermy in situ. Yellowfin, albacore, and Pacific bluefin tuna (PBFT) in the California Current system used more surface, mesopelagic, and deep waters, respectively. Expression of cardiac genes for calcium cycling increased in PBFT and coincided with broader vertical and thermal niche utilization. However, the PBFT diet was less diverse and focused on energy-rich forage fishes but did not show the greatest energy gains. Ecosystem-based management strategies for tunas should thus consider species-specific differences in physiology and foraging specialization.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Proteínas de Peces/genética , Atún/genética , Adaptación Fisiológica/fisiología , Animales , Calcio/metabolismo , California , Conducta Alimentaria/fisiología , Proteínas de Peces/metabolismo , Expresión Génica , Geografía , Océano Pacífico , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Especificidad de la Especie , Temperatura , Atún/clasificación , Atún/fisiología
16.
Proc Natl Acad Sci U S A ; 111(15): E1510-8, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706825

RESUMEN

The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1-15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts.


Asunto(s)
Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/patología , Cardiopatías/veterinaria , Corazón/efectos de los fármacos , Contaminación por Petróleo/historia , Petróleo/toxicidad , Atún , Análisis de Varianza , Animales , Embrión no Mamífero/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas/veterinaria , Golfo de México , Corazón/crecimiento & desarrollo , Cardiopatías/inducido químicamente , Cardiopatías/patología , Historia del Siglo XXI , Procesamiento de Imagen Asistido por Computador , Hidrocarburos Policíclicos Aromáticos/análisis
17.
Environ Sci Technol ; 50(19): 10456-10464, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27580258

RESUMEN

Analysis of environmental DNA (eDNA) to identify macroorganisms and biodiversity has the potential to significantly augment spatial and temporal biological monitoring in aquatic ecosystems. Current monitoring methods relying on the physical identification of organisms can be time consuming, expensive, and invasive. Measuring eDNA shed from organisms provides detailed information on the presence and abundance of communities of organisms. However, little is known about eDNA shedding and decay in aquatic environments. In the present study, we designed novel Taqman qPCR assays for three ecologically and economically important marine fish-Engraulis mordax (Northern Anchovy), Sardinops sagax (Pacific Sardine), and Scomber japonicas (Pacific Chub Mackerel). We subsequently measured fish eDNA shedding and decay rates in seawater mesocosms. eDNA shedding rates ranged from 165 to 3368 pg of DNA per hour per gram of biomass. First-order decay rate constants ranged from 0.055 to 0.101 per hour. We also examined the size fractionation of eDNA and concluded eDNA is both intra- and extracellular. Finally, we derived a simple mass-balance model to estimate fish abundance from eDNA concentration. The mesocosm-derived shedding and decay rates inform the interpretation of eDNA concentrations measured in environmental samples and future use of eDNA as a monitoring tool.


Asunto(s)
Ecosistema , Peces/genética , Animales , Biodiversidad , Biomasa , ADN
18.
Artículo en Inglés | MEDLINE | ID: mdl-26794613

RESUMEN

Specific dynamic action (SDA), the increase in metabolic expenditure associated with consumption of a meal, represents a substantial portion of fish energy budgets and is highly influenced by ambient temperature. The effect of temperature on SDA has not been studied in yellowfin tuna (Thunnus albacares, Bonnaterre 1788), an active pelagic predator that occupies temperate and subtropical waters. The energetic cost and duration of SDA were calculated by comparing routine and post-prandial oxygen consumption rates. Mean routine metabolic rates in yellowfin tuna increased with temperature, from 136 mg O2 kg(-1)h(-1) at 20 °C to 211 mg O2 kg(-1)h at 24 °C. The mean duration of SDA decreased from 40.2h at 20 °C to 33.1h at 24 °C, while mean SDA coefficient, the percentage of energy in a meal that is consumed during digestion, increased from 5.9% at 20 °C to 12.7% at 24 °C. Digestion in yellowfin tuna is faster at a higher temperature but requires additional oxidative energy. Enhanced characterization of the role of temperature in SDA of yellowfin tuna deepens our understanding of tuna physiology and can help improve management of aquaculture and fisheries.


Asunto(s)
Periodo Posprandial/fisiología , Temperatura , Atún/metabolismo , Animales
19.
Proc Biol Sci ; 282(1799): 20141446, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25621332

RESUMEN

Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny.


Asunto(s)
Ecosistema , Tiburones/fisiología , Columna Vertebral/química , Animales , Teorema de Bayes , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Océano Pacífico , Densidad de Población , Dinámica Poblacional
20.
Artículo en Inglés | MEDLINE | ID: mdl-25732931

RESUMEN

Pacific bluefin tuna (Thunnus orientalis) is a highly migratory, commercially valuable species potentially vulnerable to acoustic noise generated from human activities which could impact behavior and fitness. Although significant efforts have been made to understand hearing abilities of fishes, the large size and need to continuously swim for respiration have hindered investigations with tuna and other large pelagic species. In this study, Pacific bluefin tuna were trained to respond to a pure tone sound stimulus ranging 325-800 Hz and their hearing abilities quantified using a staircase psychophysical technique. Hearing was most sensitive from 400 to 500 Hz in terms of particle motion (radial acceleration -88 dB re 1 m s(-2); vertical acceleration -86 dB re 1 m s(-2)) and sound pressure (83 dB re 1 µPa). Compared to yellowfin tuna (Thunnus albacares) and kawakawa (Euthynnus affinis), Pacific bluefin tuna has a similar bandwidth of hearing and best frequency, but greater sensitivity overall. Careful calibration of the sound stimulus and experimental tank environment, as well as the adoption of behavioral methodology, demonstrates an experimental approach highly effective for the study of large fish species in the laboratory.


Asunto(s)
Umbral Auditivo/fisiología , Audición/fisiología , Percepción de Movimiento/fisiología , Natación/fisiología , Atún/fisiología , Estimulación Acústica , Animales , Océano Pacífico , Psicoacústica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA