Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 13(1): 12497, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532758

RESUMEN

Hashimoto thyroiditis is an autoimmune disease characterized by hypothyroidism and a high level of anti-thyroid autoantibodies. It has shown to negatively impact female fertility; however, the mechanisms are unclear. Ovarian follicular fluid appears to be the key to understanding how Hashimoto thyroiditis affecst fertility. Thus, we aimed to evaluated the metabolic profile of follicular fluid and antithyroid autoantibody levels in the context of Hashimoto thyroiditis. We collected follicular fluid from 61 patients, namely 38 women with thyroid autoantibody positivity and 23 women as negative controls, undergoing in vitro fertilization treatment. Follicular fluid samples were analyzed using metabolomics, and thyroid autoantibodies were measured. Fifteen metabolites with higher concentrations in the follicular fluid samples from Hashimoto thyroiditis were identified, comprising five possible affected pathways: the glycerophospholipid, arachidonic acid, linoleic acid, alpha-linolenic acid, and sphingolipid metabolism pathways. These pathways are known to regulate ovarian functions. In addition, antithyroglobulin antibody concentrations in both serum and follicular fluid were more than tenfold higher in women with Hashimoto thyroiditis than in controls. Our data showed that the metabolic profile of follicular fluid is altered in women with Hashimoto thyroiditis, suggesting a potential mechanistic explanation for the association of this disease with female infertility.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad de Hashimoto , Humanos , Femenino , Líquido Folicular , Autoanticuerpos , Metabolómica
2.
Metabolites ; 12(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35629920

RESUMEN

Thyroid hormone (TH) signaling controls muscle progenitor cells differentiation. However, inflammation can alter muscle TH signaling by modulating the expression of TH transporters (Slc16a2), receptors (Thra1), and deiodinase enzymes (Dio2 and Dio3). Thus, a proinflammatory environment could affect myogenesis. The role of a low-grade inflammatory milieu in TH signaling during myogenesis needs further investigation. Herein, we aimed to study the impact of the bacterial lipopolysaccharide (LPS)-induced inflammatory stimulus on the TH signaling during myogenesis. C2C12 myoblasts differentiation was induced without (CTR) or with 10 ng/mL LPS presence. The myoblasts under LPS stimulus release the proinflammatory cytokines (IL-6 and IL-1ß) and chemokines (CCL2 and CXCL-1). LPS decreases Myod1 expression by 28% during the initial myogenesis, thus reducing the myogenic stimulus. At the same time, LPS reduced the expression of Dio2 by 41% but doubled the D2 enzymatic activity. The late differentiation was not affected by inflammatory milieu, which only increased the Slc16a2 gene expression by 38%. LPS altered the intracellular metabolism of TH and reduced the initial myogenic stimulus. However, it did not affect late differentiation. Increased intracellular TH activation may be the compensatory pathway involved in the recovery of myogenic differentiation under a low-grade inflammatory milieu.

3.
Histol Histopathol ; 36(7): 775-783, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33825181

RESUMEN

The mdx mouse model of Duchenne Muscular Dystrophy (DMD) presents sarcolemma instability and develops a mild multi-stage dystrophinopathy characterized by intense myonecrosis with inflammatory infiltrate at 4-weeks; muscular regeneration at 12-weeks and persistent fibrosis onwards. Mdx diaphragm muscle has a more severe phenotype with structural and functional deterioration that closely resembles the diaphragm impairment responsible for DMD human patients' morbidity. Herein, we compared calcium deposits, activity of calcium-related proteases, and expression of muscle-specific proteins in mdx diaphragm at 4-weeks and 12-weeks. We found increased calcium deposits mainly at 12-weeks, concomitant with high activity of calpains and matrix metalloprotease-9, but decreased expression of Myh4 (Myhc IIb) and Atp2a1 (SERCA1), and high expression of the myogenic regulatory factors Myod1 and Myog. Our results suggest that increased calcium deposits and persistent activity of calcium dependent proteases throughout the disease are involved in the degeneration and regeneration processes in the mdx diaphragm.


Asunto(s)
Calcio/metabolismo , Diafragma/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Diafragma/patología , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología
4.
Front Physiol ; 12: 704044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557108

RESUMEN

BACKGROUND: The diaphragm is the primary muscle of inspiration, and its dysfunction is frequent during sepsis. However, the mechanisms associated with sepsis and diaphragm dysfunction are not well understood. In this study, we evaluated the morphophysiological changes of the mitochondrial diaphragm 5 days after sepsis induction. METHODS: Male C57Bl/6 mice were divided into two groups, namely, cecal ligation and puncture (CLP, n = 26) and sham-operated (n = 19). Mice received antibiotic treatment 8 h after surgery and then every 24 h until 5 days after surgery when mice were euthanized and the diaphragms were collected. Also, diaphragm function was evaluated in vivo by ultrasound 120 h after CLP. The tissue fiber profile was evaluated by the expression of myosin heavy chain and SERCA gene by qPCR and myosin protein by using Western blot. The Myod1 and Myog expressions were evaluated by using qPCR. Diaphragm ultrastructure was assessed by electron microscopy, and mitochondrial physiology was investigated by high-resolution respirometry, Western blot, and qPCR. RESULTS: Cecal ligation and puncture mice developed moderated sepsis, with a 74% survivor rate at 120 h. The diaphragm mass did not change in CLP mice compared with control, but we observed sarcomeric disorganization and increased muscle thickness (38%) during inspiration and expiration (21%). Septic diaphragm showed a reduction in fiber myosin type I and IIb mRNA expression by 50% but an increase in MyHC I and IIb protein levels compared with the sham mice. Total and healthy mitochondria were reduced by 30% in septic mice, which may be associated with a 50% decrease in Ppargc1a (encoding PGC1a) and Opa1 (mitochondria fusion marker) expressions in the septic diaphragm. The small and non-functional OPA1 isoform also increased 70% in the septic diaphragm. These data suggest an imbalance in mitochondrial function. In fact, we observed downregulation of all respiratory chain complexes mRNA expression, decreased complex III and IV protein levels, and reduced oxygen consumption associated with ADP phosphorylation (36%) in CLP mice. Additionally, the septic diaphragm increased proton leak and downregulated Sod2 by 70%. CONCLUSION: The current model of sepsis induced diaphragm morphological changes, increased mitochondrial damage, and induced functional impairment. Thus, diaphragm damage during sepsis seems to be associated with mitochondrial dysfunction.

5.
Front Microbiol ; 12: 706499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394055

RESUMEN

Infection alters the expression of transporters that mediate the placental exchange of xenobiotics, lipids and cytokines. We hypothesized that lipopolysaccharide (LPS) modifies the expression of placental transport systems and lipid homeostasis. LPS (150 µg/kg; i.p.) treatments were administered for 4 h or 24 h, animals were euthanized at gestational days (GD) 15.5 or 18.5, and maternal blood, fetuses and placentae were collected. Increased rates of fetal demise were observed at GD15.5 following LPS treatment, whereas at GD18.5, high rates of early labour occurred and were associated with distinct proinflammatory responses. Lipopolysaccharide did not alter ATP-binding cassette (ABC) transporter mRNA expression but decreased fatty acid binding protein associated with plasma membrane (Fabppm) at GD15.5 (LPS-4 h) and increased fatty acid translocase (Fat/Cd36) mRNA at GD18.5 (LPS-4 h). At the protein level, breast cancer-related protein (Bcrp) and ABC sub-family G member 1 (Abcg1) levels were decreased in the placental labyrinth zone (Lz) at GD15.5, whereas P-glycoprotein (P-gp) and Bcrp Lz-immunostaining was decreased at GD18.5. In the placental junctional zone (Jz), P-gp, Bcrp and Abcg1 levels were higher at GD18.5. Specific maternal plasma and placental changes in triacylglycerol, free fatty acid, cholesterol, cholesterol ester and monoacylglycerol levels were detected in a gestational age-dependent manner. In conclusion, LPS-increased risk of fetal death and early labour were associated with altered placental ABC and lipid transporter expression and deranged maternal plasma and placental lipid homeostasis. These changes may potentially modify fetal xenobiotic exposure and placental lipid exchange in cases of bacterial infection.

6.
Front Immunol ; 12: 680246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093581

RESUMEN

Congenital Zika virus (ZIKV) infection can induce fetal brain abnormalities. Here, we investigated whether maternal ZIKV infection affects placental physiology and metabolic transport potential and impacts the fetal outcome, regardless of viral presence in the fetus at term. Low (103 PFU-ZIKVPE243; low ZIKV) and high (5x107 PFU-ZIKVPE243; high ZIKV) virus titers were injected into immunocompetent (ICompetent C57BL/6) and immunocompromised (ICompromised A129) mice at gestational day (GD) 12.5 for tissue collection at GD18.5 (term). High ZIKV elicited fetal death rates of 66% and 100%, whereas low ZIKV induced fetal death rates of 0% and 60% in C57BL/6 and A129 dams, respectively. All surviving fetuses exhibited intrauterine growth restriction (IUGR) and decreased placental efficiency. High-ZIKV infection in C57BL/6 and A129 mice resulted in virus detection in maternal spleens and placenta, but only A129 fetuses presented virus RNA in the brain. Nevertheless, pregnancies in both strains produced fetuses with decreased head sizes (p<0.05). Low-ZIKV-A129 dams had higher IL-6 and CXCL1 levels (p<0.05), and their placentas showed increased CCL-2 and CXCL-1 contents (p<0.05). In contrast, low-ZIKV-C57BL/6 dams had an elevated CCL2 serum level and increased type I and II IFN expression in the placenta. Notably, less abundant microvilli and mitochondrial degeneration were evidenced in the placental labyrinth zone (Lz) of ICompromised and high-ZIKV-ICompetent mice but not in low-ZIKV-C57BL/6 mice. In addition, decreased placental expression of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and the lipid transporter Abca1 was detected in all ZIKV-infected groups, but Bcrp and Abca1 were only reduced in ICompromised and high-ZIKV ICompetent mice. Our data indicate that gestational ZIKV infection triggers specific proinflammatory responses and affects placental turnover and transporter expression in a manner dependent on virus concentration and maternal immune status. Placental damage may impair proper fetal-maternal exchange function and fetal growth/survival, likely contributing to congenital Zika syndrome.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Placenta/ultraestructura , Placenta/virología , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología , Virus Zika/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis , Biomarcadores , Femenino , Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Huésped Inmunocomprometido , Inmunohistoquímica , Masculino , Ratones , Embarazo , Infección por el Virus Zika/patología
7.
J Physiol ; 588(Pt 9): 1635-45, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20211980

RESUMEN

Previous studies have proposed a role for neuromedin B (NB), a bombesin-like peptide, in the control of body weight homeostasis. However, the nature of this role is unclear. The actions of NB are mediated preferentially by NB-preferring receptors (NBRs). Here we examined the consequences of targeted deletion of NBRs in female mice on body weight homeostasis in mice fed a normolipid diet (ND) or a high-fat diet (HFD) for 13 weeks. Body weight and food ingestion of neuromedin B receptor knockout (NBR-KO) mice fed a normolipid diet showed no difference in relation to wild-type (WT). However, the high-fat diet induced an 8.9- and 4.8-fold increase in body weight of WT and NBR-KO, respectively, compared to their controls maintained with a normolipid diet, even though the mice ingested the same amount of calories, regardless of genotype. Comparing mice fed the high-fat diet, NBR-KO mice accumulated approximately 45% less fat depot mass than WT, exhibited a lower percentage of fat in their carcasses (19.2 vs. 31.3%), and their adipocytes were less hypertrophied. Serum leptin and leptin mRNA in inguinal and perigonadal fat were lower in HFD NBR-KO than HFD WT, and serum adiponectin was similar among HFD groups and unaltered in comparison to ND-fed mice. HFD-fed WT mice developed glucose intolerance but not the HFD-fed NBR-KO mice, although they had similar glycaemia and insulinaemia. NBR-KO and WT mice on the normolipid diet showed no differences in any parameters, except for a trend to lower insulin levels. Therefore, disruption of the neuromedin B receptor pathway did not change body weight homeostasis in female mice fed a normolipid diet; however, it did result in partial resistance to diet-induced obesity.


Asunto(s)
Dieta , Obesidad/genética , Receptores de Bombesina/fisiología , Tejido Adiposo Blanco/anatomía & histología , Animales , Compuestos Azo , Composición Corporal/genética , Composición Corporal/fisiología , Peso Corporal/genética , Peso Corporal/fisiología , Colorantes , Grasas de la Dieta/farmacología , Ingestión de Energía , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Femenino , Prueba de Tolerancia a la Glucosa , Homeostasis/genética , Homeostasis/fisiología , Hormonas/sangre , Leptina/biosíntesis , Leptina/genética , Lípidos/sangre , Hígado/química , Hígado/metabolismo , Ratones , Ratones Noqueados , Receptores de Bombesina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Histol Histopathol ; 35(2): 203-216, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31274171

RESUMEN

Sarcolemma instability and increased calcium influx in muscle fibers are characteristics of the Duchenne muscular dystrophy. Excessive calcium activates calcium-dependent enzymes, such as calpains (CAPN) and matrix metalloproteases (MMP). Here, we analyzed calcium deposits, the activity of CAPN and MMP and the expression of Myh, SERCA and myogenic regulatory factors in different skeletal muscles during myonecrosis (4-weeks) and regeneration (12-weeks) phases of the mdx muscular pathology. Alizarin red staining was used to assess calcium deposits, casein and gelatin zymography were performed to evaluate CAPN and MMP activity, and qPCR was used to evaluate the expression of Myh, Capn, Atp2a1 and Atp2a2, Myod1 and Myog. We observed the following characteristics in mdx muscles: (i) calcium deposits almost exclusively in mdx muscles, (ii) lower CAPN1 activity in mdx muscles, (iii) higher CAPN2 activity in mdx muscles (only at 12 wks), (iv) autolyzed CAPN activity exclusively in mdx muscles, (v) lower expression of Capn1 and higher expression of Capn2 in mdx muscles; (vi) lower expression of Atp2a1 and Atp2a2 in mdx muscles, (vii) higher MMP (pre pro MMP2, pro MMP2, MMP2 and MMP9) activity in mdx muscles, (viii) MMP2 activity exclusively in mdx muscles at 12 wks, (ix) MMP9 activity exclusively in mdx muscles, (x) higher expression of Myog in mdx muscles at 12 wks, and (xi) lower expression of Myh (Myh7, Myh2, Myh1, Myh4) in mdx muscles, particularly Myh7 and Myh2. The collection of our results provides valuable information for a better characterization of mdx pathology phenotype.


Asunto(s)
Calcio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Animales , Ratones , Ratones Endogámicos mdx
9.
J Endocr Soc ; 4(7): bvaa064, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32666010

RESUMEN

Studies have reported a possible association between the levels of oxidative stress biomarkers in follicular fluid (FF) and infertility treatment outcomes. FF analysis can provide important information about oocyte quality. This study aimed to evaluate the possible correlation between oxidative stress biomarker and intrafollicular hormone levels and clinical and laboratory parameters in women during controlled ovarian stimulation. These women were undergoing in vitro fertilization with intracytoplasmic sperm injection (ICSI).The FF samples were acquired from September 2012 to February 2014 from women undergoing private fertility treatment in Rio de Janeiro, Brazil. A total of 196 women who were undergoing ICSI and had different infertility diagnoses were recruited. The FF from each patient (average patient age of 36.3 ± 4.3 years) was collected following puncture of just one follicle with the largest diameter. After ruling out blood contamination by spectrophotometry, 163 patient samples were utilized in the study. In the FF, the progesterone levels were negatively correlated with (a) hydrogen peroxide scavenging capacity (HPSC) (r = -0.294, P < 0.0001), (b) total number of follicles (r = -0.246, P < 0.001) and (c) total number of oocytes punctured (r = -0.268, P = 0.0001). The concentration of serum estradiol exhibited a positive correlation with intrafollicular HPSC (r = 0.165, P = 0.037). Our data indicate that the FF levels of estradiol and progesterone are related to the FF redox status, which is closely associated with the number of oocytes obtained during ICSI procedures.

10.
Thyroid ; 30(7): 1079-1090, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32200709

RESUMEN

Background: Sepsis can cause the nonthyroidal illness syndrome (NTIS), resulting in perturbed thyroid hormone (TH) signaling and reduced thyroxine (T4) levels. TH is a major regulator of muscle function, via its influence on mitochondria. This study aimed at evaluating the relationship between TH signaling, mitochondrial function, and the antioxidant defense system in the diaphragms of septic mice. Methods: Male C57Bl/6 mice were divided into two groups: cecal ligation and puncture (CLP) and sham. Twenty-four hours after surgery, plasma, diaphragms, and livers were collected. TH metabolism and responses were analyzed by measuring messenger RNA (mRNA) expression of Dio1 in the liver, and Thra, Thrb, Dio2, Slc16a10, and Slc16a2 (encodes MCT 10 and 8), in the diaphragm. T4 plasma levels were measured by radioimmunoassay. Damage to diaphragm mitochondria was assessed by electron microscopy and real-time polymerase chain reaction (qPCR), and function with oxygraphy. The diaphragm antioxidative defense system was examined by qPCR, analyzing superoxide dismutase (SOD) 1 (Sod1), mitochondrial superoxide dismutase (SOD 2; Sod2), extracellular superoxide dismutase (SOD 3; Sod3), glutathione peroxidase 1 (Gpx1), and catalase (Cat) expression. The effect of TH replacement was tested by treating the mice with T4 and triiodothyronine (T3) (CLP+TH) after surgery. Results: CLP mice presented reduced total plasma T4 concentrations, downregulated Dio1, and upregulated Il1b mRNA expression in the liver. CLP mice also displayed downregulated Thra, Thrb, Slc16a10, and Slc16a2 expression in the diaphragm, suggesting that TH signaling was compromised. The expression of Ppargc1a (encoding PGC1a) was downregulated, which correlated with the decrease in the number of total mitochondria, increase in the percentage of injured mitochondria, downregulation of respiratory chain complex 2 and 3 mRNA expression, and reduced maximal respiration. In addition, septic animals presented a three-fold increase in Ucp3 and G6pdh expression; downregulated Sod3, Gpx1, and Cat expression; and upregulated Sod2 expression, potentially due to elevated reactive oxygen species levels. The mitochondrial number and the percentage of injured mitochondrial were similar between sham and CLP+TH mice. Conclusions: Sepsis induced responses consistent with NTIS, resulted in mitochondrial damage and functional impairment, and modulated the expression of key antioxidant enzymes in the diaphragm. Thus, impaired diaphragm function during sepsis seems to involve altered local TH signaling, mitochondrial dysfunction, and oxidative stress defense.


Asunto(s)
Diafragma/metabolismo , Mitocondrias/metabolismo , Sepsis/metabolismo , Transducción de Señal/fisiología , Hormonas Tiroideas/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Hígado/metabolismo , Ratones , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
11.
Sci Rep ; 9(1): 1986, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760802

RESUMEN

Mitochondria play an important role in providing ATP for muscle contraction. Muscle physiology is compromised in Duchenne muscular dystrophy (DMD) and several studies have shown the involvement of bioenergetics. In this work we investigated the mitochondrial physiology in fibers from fast-twitch muscle (EDL) and slow-twitch muscle (soleus) in the mdx mouse model for DMD and in control C57BL/10J mice. In our study, multiple mitochondrial respiratory parameters were investigated in permeabilized muscle fibers from 12-week-old animals, a critical age where muscle regeneration is observed in the mdx mouse. Using substrates of complex I and complex II from the electron transport chain, ADP and mitochondrial inhibitors, we found in the mdx EDL, but not in the mdx soleus, a reduction in coupled respiration suggesting that ATP synthesis is affected. In addition, the oxygen consumption after addition of complex II substrate is reduced in mdx EDL; the maximal consumption rate (measured in the presence of uncoupler) also seems to be reduced. Mitochondria are involved in calcium regulation and we observed, using alizarin stain, calcium deposits in mdx muscles but not in control muscles. Interestingly, more calcium deposits were found in mdx EDL than in mdx soleus. These data provide evidence that in 12-week-old mdx mice, calcium is accumulated and mitochondrial function is disturbed in the fast-twitch muscle EDL, but not in the slow-twitch muscle soleus.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Distrofia Muscular Animal/patología , Adenosina Trifosfato/biosíntesis , Animales , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología , Consumo de Oxígeno/fisiología , Regeneración/fisiología
12.
J Endocrinol ; 220(3): 305-17, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24363450

RESUMEN

The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3'-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3 for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19(+)B-cells. T3 administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220(+) cells correlating with an increased percentage of CD138(+) plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detected ex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3 stimulate plasma cytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.


Asunto(s)
Diferenciación Celular , Hipertiroidismo/fisiopatología , Células Plasmáticas/citología , Triyodotironina/sangre , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Femenino , Humanos , Hipertiroidismo/sangre , Inmunoglobulinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Plasmáticas/metabolismo , Bazo/citología , Bazo/metabolismo , Tiroxina/sangre , Triyodotironina/metabolismo
13.
J Endocrinol ; 216(2): 181-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23151359

RESUMEN

Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRß. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.


Asunto(s)
Sirtuina 1/metabolismo , Hormonas Tiroideas/sangre , Animales , Peso Corporal/genética , Peso Corporal/fisiología , Restricción Calórica , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Hipertiroidismo/genética , Hipertiroidismo/metabolismo , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Ratones , Ratones Transgénicos , Sirtuina 1/genética , Receptores beta de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo
14.
Cell Biol Int ; 32(10): 1323-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18703152

RESUMEN

The MAPK p38 is phosphorylated by multiple stimuli and regulates a number of transcription factors. It is reported that activation of p38 leading to the regulation of NFAT may result from an alternative MKK-independent mechanism. This alternative pathway involves the protein Dlgh1 as an essential scaffold that assembles a module for the activation of p38. Ouabain, a specific inhibitor of the Na+/K+-ATPase, is capable of inducing the activation of various signal transduction cascades. In the present work, P-p38 levels of ConA-activated thymocytes treated with ouabain (1, 10 and 100 nM) were measured as also the effect of ouabain on NFATc1 expression. p38 phosphorylation and NFATc1 levels were analyzed by flow cytometry. The results indicated that ouabain inhibited both ConA-dependent increase in P-p38 and NFATc1 levels, which suggests an effect of ouabain on the p38 alternative pathway.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ouabaína/farmacología , Timo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Concanavalina A/metabolismo , Activación Enzimática , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Timo/citología , Timo/efectos de los fármacos , Timo/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA