Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 117: 315-325, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35725085

RESUMEN

Many drinking water treatment plants in the U.S. have switched from chlorination to chloramination to lower levels of regulated trihalomethane (THM) and haloacetic acid (HAA) disinfection byproducts (DBPs) in drinking water and meet the current regulations. However, chloramination can also produce other highly toxic/carcinogenic, unregulated DBPs: iodo-acids, iodo-THMs, and N-nitrosodimethylamine (NDMA). In practice, chloramines are generated by the addition of chlorine with ammonia, and plants use varying amounts of free chlorine contact time prior to ammonia addition to effectively kill pathogens and meet DBP regulations. However, iodo-DBPs and nitrosamines are generally not considered in this balancing of free chlorine contact time. The goal of our work was to determine whether an optimal free chlorine contact time could be established in which iodo-DBPs and NDMA could be minimized, while keeping regulated THMs and HAAs below their regulatory limits. The effect of free chlorine contact time was evaluated for the formation of six iodo-trihalomethanes (iodo-THMs), six iodo-acids, and NDMA during the chloramination of drinking water. Ten different free chlorine contact times were examined for two source waters with different dissolved organic carbon (DOC) and bromide/iodide. For the low DOC water at pH 7 and 8, an optimized free chlorine contact time of up to 1 h could control regulated THMs and HAAs, as well as iodo-DBPs and NDMA. For the high DOC water, a free chlorine contact time of 5 min could control iodo-DBPs and NDMA at both pHs, but the regulated DBPs could exceed the regulations at pH 7.


Asunto(s)
Desinfectantes , Agua Potable , Yodo , Contaminantes Químicos del Agua , Amoníaco , Cloro , Dimetilnitrosamina , Desinfección , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
2.
Nano Lett ; 18(6): 3630-3636, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29767986

RESUMEN

We investigated low-frequency noise in two-dimensional (2D) charge density wave (CDW) systems, 1 T-TaS2 thin films, as they were driven from the nearly commensurate (NC) to incommensurate (IC) CDW phases by voltage and temperature stimuli. This study revealed that noise in 1 T-TaS2 has two pronounced maxima at the bias voltages, which correspond to the onset of CDW sliding and the NC-to-IC phase transition. We observed unusual Lorentzian features and exceptionally strong noise dependence on electric bias and temperature, leading to the conclusion that electronic noise in 2D CDW systems has a unique physical origin different from known fundamental noise types. We argue that noise spectroscopy can serve as a useful tool for understanding electronic transport phenomena in 2D CDW materials characterized by coexistence of different phases and strong pinning.

4.
Nano Lett ; 17(1): 377-383, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073263

RESUMEN

We report results of investigation of the low-frequency electronic excess noise in quasi-1D nanowires of TaSe3 capped with quasi-2D h-BN layers. Semimetallic TaSe3 is a quasi-1D van der Waals material with exceptionally high breakdown current density. It was found that TaSe3 nanowires have lower levels of the normalized noise spectral density, SI/I2, compared to carbon nanotubes and graphene (I is the current). The temperature-dependent measurements revealed that the low-frequency electronic 1/f noise becomes the 1/f2 type as temperature increases to ∼400 K, suggesting the onset of electromigration (f is the frequency). Using the Dutta-Horn random fluctuation model of the electronic noise in metals, we determined that the noise activation energy for quasi-1D TaSe3 nanowires is approximately EP ≈ 1.0 eV. In the framework of the empirical noise model for metallic interconnects, the extracted activation energy, related to electromigration is EA = 0.88 eV, consistent with that for Cu and Al interconnects. Our results shed light on the physical mechanism of low-frequency 1/f noise in quasi-1D van der Waals semimetals and suggest that such material systems have potential for ultimately downscaled local interconnect applications.

5.
ACS Appl Nano Mater ; 4(1): 514-521, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33615158

RESUMEN

The scalable and conformal synthesis of two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is a persisting challenge for their implementation in next-generation devices. In this work, we report the synthesis of nanometer-thick 2D TMDC heterostructures consisting of TiS x -NbS x on both planar and 3D structures using atomic layer deposition (ALD) at low temperatures (200-300 °C). To this end, a process was developed for the growth of 2D NbS x by thermal ALD using (tert-butylimido)-tris-(diethylamino)-niobium (TBTDEN) and H2S gas. This process complemented the TiS x thermal ALD process for the growth of 2D TiS x -NbS x heterostructures. Precise thickness control of the individual TMDC material layers was demonstrated by fabricating multilayer (5-layer) TiS x -NbS x heterostructures with independently varied layer thicknesses. The heterostructures were successfully deposited on large-area planar substrates as well as over a 3D nanowire array for demonstrating the scalability and conformality of the heterostructure growth process. The current study demonstrates the advantages of ALD for the scalable synthesis of 2D heterostructures conformally over a 3D substrate with precise thickness control of the individual material layers at low temperatures. This makes the application of 2D TMDC heterostructures for nanoelectronics promising in both BEOL and FEOL containing high-aspect-ratio 3D structures.

6.
Langmuir ; 26(10): 7561-4, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20047344

RESUMEN

An effective purification method for single-walled carbon nanotubes (SWNTs) based on a combination of oxidative acid treatment and reversible noncovalent functionalization with 1-pyreneacetic acid is reported. The functionalization was selective toward the nanotubes, allowing a nearly complete removal of residual metal catalysts and carbonaceous impurities. The resulting highly pure SWNTs remained solvent-dispersible, a valuable feature to potential applications that require solvent-based processing. The functionalization agent could be recovered quantitatively and reused. Effects of the purification process on the composition and properties of the nanotube sample were evaluated.


Asunto(s)
Nanotubos de Carbono/química , Tamaño de la Partícula , Pirenos , Propiedades de Superficie
7.
ACS Appl Mater Interfaces ; 12(3): 3873-3885, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31880425

RESUMEN

Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) such as WS2 are promising materials for nanoelectronic applications. However, growth of the desired horizontal basal-plane oriented 2D TMD layers is often accompanied by the growth of vertical nanostructures that can hinder charge transport and, consequently, hamper device application. In this work, we discuss both the formation and suppression of vertical nanostructures during plasma-enhanced atomic layer deposition (PEALD) of WS2. Using scanning transmission electron microscopy studies, formation pathways of vertical nanostructures are established for a two-step (AB-type) PEALD process. Grain boundaries are identified as the principal formation centers of vertical nanostructures. Based on the obtained insights, we introduce an approach to suppress the growth of vertical nanostructures, wherein an additional step (C)-a chemically inert Ar plasma or a reactive H2 plasma-is added to the original two-step (AB-type) PEALD process. This approach reduces the vertical nanostructure density by 80%. It was confirmed that suppression of vertical nanostructures goes hand in hand with grain size enhancement. The vertical nanostructure density reduction consequently lowers film resistivity by an order of magnitude. Insights obtained in this work can contribute toward devising additional pathways, besides plasma treatments, for suppressing the growth of vertical nanostructures and improving the material properties of 2D TMDs that are relevant for nanoelectronic device applications.

8.
Chem Mater ; 31(14): 5104-5115, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31371869

RESUMEN

Edge-enriched transition metal dichalcogenides, such as WS2, are promising electrocatalysts for sustainable production of H2 through the electrochemical hydrogen evolution reaction (HER). The reliable and controlled growth of such edge-enriched electrocatalysts at low temperatures has, however, remained elusive. In this work, we demonstrate how plasma-enhanced atomic layer deposition (PEALD) can be used as a new approach to nanoengineer and enhance the HER performance of WS2 by maximizing the density of reactive edge sites at a low temperature of 300 °C. By altering the plasma gas composition from H2S to H2 + H2S during PEALD, we could precisely control the morphology and composition and, consequently, the edge-site density as well as chemistry in our WS2 films. The precise control over edge-site density was verified by evaluating the number of exposed edge sites using electrochemical copper underpotential depositions. Subsequently, we demonstrate the HER performance of the edge-enriched WS2 electrocatalyst, and a clear correlation among plasma conditions, edge-site density, and the HER performance is obtained. Additionally, using density functional theory calculations we provide insights and explain how the addition of H2 to the H2S plasma impacts the PEALD growth behavior and, consequently, the material properties, when compared to only H2S plasma.

9.
Chem Mater ; 31(22): 9354-9362, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31806923

RESUMEN

Phase-controlled synthesis of two-dimensional (2D) transition-metal chalcogenides (TMCs) at low temperatures with a precise thickness control has to date been rarely reported. Here, we report on a process for the phase-controlled synthesis of TiS2 (metallic) and TiS3 (semiconducting) nanolayers by atomic layer deposition (ALD) with precise thickness control. The phase control has been obtained by carefully tuning the deposition temperature and coreactant composition during ALD. In all cases, characteristic self-limiting ALD growth behavior with a growth per cycle (GPC) of ∼0.16 nm per cycle was observed. TiS2 was prepared at 100 °C using H2S gas as coreactant and was also observed using H2S plasma as a coreactant at growth temperatures between 150 and 200 °C. TiS3 was synthesized only at 100 °C using H2S plasma as the coreactant. The S2 species in the H2S plasma, as observed by optical emission spectroscopy, has been speculated to lead to the formation of the TiS3 phase at low temperatures. The control between the synthesis of TiS2 and TiS3 was elucidated by Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution electron microscopy, and Rutherford backscattering study. Electrical transport measurements showed the low resistive nature of ALD grown 2D-TiS2 (1T-phase). Postdeposition annealing of the TiS3 layers at 400 °C in a sulfur-rich atmosphere improved the crystallinity of the film and yielded photoluminescence at ∼0.9 eV, indicating the semiconducting (direct band gap) nature of TiS3. The current study opens up a new ALD-based synthesis route for controlled, scalable growth of transition-metal di- and tri-chalcogenides at low temperatures.

10.
ACS Nano ; 13(6): 7231-7240, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31173685

RESUMEN

We report on switching among three charge-density-wave phases, commensurate, nearly commensurate, incommensurate, and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane bias voltage. The switching among all phases has been achieved over a wide temperature range, from 77 to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 to 600 K. Analysis of the experimental data and calculations of heat dissipation indicate that Joule heating plays a dominant role in the voltage induced transitions in the 1T-TaS2 devices on Si/SiO2 substrates, contrary to some recent claims. The possibility of the bias-voltage switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in the materials.

11.
Nanoscale ; 10(42): 19749-19756, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30328869

RESUMEN

We describe the low-frequency current fluctuations, i.e. electronic noise, in quasi-one-dimensional ZrTe3 van der Waals nanoribbons, which have recently attracted attention owing to their extraordinary high current carrying capacity. Whereas the low-frequency noise spectral density, SI/I2, reveals 1/f behavior near room temperature, it is dominated by the Lorentzian bulges of the generation-recombination noise at low temperatures (I is the current and f is the frequency). Unexpectedly, the corner frequency of the observed Lorentzian peaks shows strong sensitivity to the applied source-drain bias. This dependence on electric field can be explained by the Frenkel-Poole effect in the scenario where the voltage drop happens predominantly on the defects, which block the quasi-1D conduction channels. We also have found that the activation energy of the characteristic frequencies of the G-R noise in quasi-1D ZrTe3 is defined primarily by the temperature dependence of the capture cross-section of the defects rather than by their energy position. These results are important for the application of quasi-1D van der Waals materials in ultimately downscaled electronics.

12.
Nanoscale ; 8(34): 15774-82, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27531559

RESUMEN

We report on the current-carrying capacity of the nanowires made from the quasi-1D van der Waals metal tantalum triselenide capped with quasi-2D boron nitride. The chemical vapor transport method followed by chemical and mechanical exfoliation were used to fabricate the mm-long TaSe3 wires with the lateral dimensions in the 20 to 70 nm range. Electrical measurements establish that the TaSe3/h-BN nanowire heterostructures have a breakdown current density exceeding 10 MA cm(-2)-an order-of-magnitude higher than that for copper. Some devices exhibited an intriguing step-like breakdown, which can be explained by the atomic thread bundle structure of the nanowires. The quasi-1D single crystal nature of TaSe3 results in a low surface roughness and in the absence of the grain boundaries. These features can potentially enable the downscaling of the nanowires to lateral dimensions in a few-nm range. Our results suggest that quasi-1D van der Waals metals have potential for applications in the ultimately downscaled local interconnects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA