Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 39, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332161

RESUMEN

In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.


Asunto(s)
Quirópteros , Phascolarctidae , Incendios Forestales , Humanos , Animales , Antibacterianos/farmacología , Australia , Farmacorresistencia Bacteriana/genética , Animales Salvajes
2.
Environ Microbiol ; 24(9): 4425-4436, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35590448

RESUMEN

The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.


Asunto(s)
Quirópteros , Animales , Australia/epidemiología , Quirópteros/microbiología , Humanos , Klebsiella , Plásmidos/genética , Agua
3.
Vet Anaesth Analg ; 47(3): 368-376, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32276883

RESUMEN

OBJECTIVE: To characterize and compare two intramuscular drug protocols using alfaxalone and alfaxalone-medetomidine combination for the field immobilization of free-ranging koalas. STUDY DESIGN: Blinded, randomized, comparative field study. ANIMALS: A total of 66 free-ranging koalas from the Mount Lofty Ranges, South Australia. METHODS: Koalas were randomly allocated into two groups. Group A animals were given alfaxalone alone at 3.5 mg kg-1. Group AM animals were given alfaxalone 2 mg kg-1 and medetomidine 40 µg kg-1, reversed with atipamezole at 0.16 mg kg-1. Blinded operators recorded heart rate (HR), respiratory rate (fR), cloacal temperature, depth of sedation and times to: first effect, sedation suitable for clinical interventions, first arousal and full recovery. Data were analysed using independent t test, Mann-Whitney U test, chi-square analysis and log-rank test at 5% level of significance. RESULTS: Suitable immobilization for clinical examination and sample collection was achieved in all animals. In groups A and AM, median time to working depth was 6.5 minutes (range: 3.4-15) and 8.1 minutes (range: 4.3-24) and time to complete recovery was 66 minutes (range: 12-138) and 34 minutes (range: 4-84), respectively, following reversal. Time to first effect was significantly shorter in group A (p = 0.013), whereas time to full arousal was significantly shorter in group AM (p = 0.007) probably due to the administration of atipamezole. Maximum HR was 117 ± 28 beats minute-1 in group A, which was a significant increase from baseline values (p < 0.0001), whereas group AM showed a significant tachypnoea of 67 ± 25 (normal fR 10-15; p < 0.0001). CONCLUSIONS AND CLINICAL RELEVANCE: Both the protocols produced immobilization, enabling clinical examination and sample collection; however, protocol AM was more suitable for field work due to shorter recovery times.


Asunto(s)
Hipnóticos y Sedantes/administración & dosificación , Medetomidina/administración & dosificación , Phascolarctidae/fisiología , Pregnanodionas/administración & dosificación , Animales , Animales Salvajes , Método Doble Ciego , Femenino , Inmovilización/veterinaria , Inyecciones Intramusculares/veterinaria , Masculino
4.
J Zoo Wildl Med ; 50(4): 937-946, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31926526

RESUMEN

Listed as near-threatened by the International Union for Conservation of Nature (IUCN), the southern hairy-nosed wombat (SHNW, Lasiorhinus latifrons) faces threats such as drought, habitat degradation and loss, disease, and persecution because of competition with agriculture. To assist with evaluation of wombat health, this study reports serum biochemical reference intervals (RIs) for wild-caught SHNW from South Australia established from 126 apparently healthy SHNW using a Beckman Coulter AU480® Automated Chemistry Analyzer using RefVal Advisor. Partitioning of RIs for male and female wombats and for the two methods of sampling was performed as appropriate, and additional significant differences (P < 0.05) in biochemical profiles were identified across age class and season examined. A number of differences were observed between male and female wombats, most notably higher creatinine, urea, and sodium in females. Subadult and juvenile wombats had significantly lower total protein, globulin, and ALT activity, and significantly higher ALP activity than adults. Wombats sampled in winter and spring had significantly higher total protein, albumin, potassium, bicarbonate, and enzyme activities (ALP, ALT, AST, GGT, GLDH, lipase), and significantly lower glucose and creatinine when compared to individuals sampled in summer and autumn. Differences in CK activity and anion gap observed between the two methods of sampling likely reflect delay and handling of animals between capture and blood collection. The serum biochemical RIs documented here are considered representative of a population of healthy SHNW, providing a tool for health assessment and monitoring of SHNW health in South Australia and elsewhere.


Asunto(s)
Marsupiales/sangre , Envejecimiento , Animales , Animales Salvajes , Australia , Análisis Químico de la Sangre/veterinaria , Femenino , Pruebas Hematológicas/veterinaria , Masculino , Valores de Referencia , Estaciones del Año
5.
J Zoo Wildl Med ; 47(3): 827-833, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27691936

RESUMEN

Nineteen white rhinoceroses ( Ceratotherium simum ) were anesthetized with 4 mg of etorphine hydrochloride; 35-40 mg of midazolam; and 7,500 international units of hyaluronidase for dehorning purposes at a game ranch in South Africa, to investigate this anesthetic combination. Median time to recumbency was 548 sec (range 361-787 sec). Good muscle relaxation and no muscle rigidity or tremors were observed in 18 animals, and only 1 individual showed slight tremors. In addition, all animals received butorphanol i.v. 5 min after recumbency at the ratio of 10 mg of butorphanol per 1 mg of etorphine. Blood gas and selected physiologic parameters were measured in the recumbent animal, immediately before and 10 min after the administration of butorphanol. Statistically significant improvements were observed in blood gas physiologic and cardiopulmonary parameters 10 min after the administration of butorphanol, with a reduction in arterial partial pressure of carbon dioxide, systolic blood pressure, and heart rate and an increase in pH, arterial partial pressure of oxygen, oxygen saturation, and respiratory rate (all P < 0.005). After i.v. naltrexone reversal, recovery was uneventful, and median time to walking or running was 110 sec (range 71-247 sec). The results indicate etorphine and midazolam combination is an effective alternative anesthetic protocol and produces good muscle relaxation. Furthermore, i.v. butorphanol was associated with improved blood gas values and cardiopulmonary function for at least 10 min postinjection.


Asunto(s)
Anestesia/veterinaria , Butorfanol/farmacología , Etorfina/farmacología , Midazolam/farmacología , Perisodáctilos , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Animales , Presión Sanguínea , Quimioterapia Combinada , Etorfina/administración & dosificación , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Masculino , Midazolam/administración & dosificación , Monitoreo Fisiológico , Perisodáctilos/sangre , Respiración/efectos de los fármacos
6.
J Zoo Wildl Med ; 45(3): 469-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25314812

RESUMEN

An animal's antioxidant capacity is measured by its ability to quench reactive oxygen species (ROS). During everyday metabolism, antioxidants and ROS are in equilibrium with one another. In times of stress, an animal produces more ROS and therefore uses its antioxidant capacity more readily in order to maintain this equilibrium. When the production of ROS exceeds the antioxidant capacity, an animal will experience extensive oxidative stress, which can ultimately affect that animal's health. During experimental study of wild animals, it is often necessary to capture them for a short period of time. In order to obtain a measurement of the effects of short-term captivity on oxidative capacity in wild animals, a population of southern hairy-nosed wombats (Lasiorhinus latifrons) in Swan Reach, South Australia (34.57 degrees S, 139.60 degrees E), was studied. To assess the variation in antioxidant capacity, two assays, the ferric reducing ability of plasma and the trolox equivalent antioxidant capacity, were performed. A third assay, thiobarbituric acid reactive substances, was used to measure the effects of ROS. Measurements of the specific antioxidants uric acid, ascorbic acid, retinol, alpha-tocopherol, and superoxide dismutase were also performed. The biochemical parameters albumin, total protein, cholinesterase, creatinine, and urea were measured as indicators for health. Results showed a significant reduction in antioxidant capacity during the overnight period of captivity.


Asunto(s)
Antioxidantes/metabolismo , Proteínas Sanguíneas/metabolismo , Marsupiales/sangre , Estrés Fisiológico/fisiología , Animales , Animales Salvajes , Australia , Creatinina/sangre , Femenino , Masculino , Especies Reactivas de Oxígeno/sangre , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica/metabolismo , Factores de Tiempo , Urea/sangre , Ácido Úrico/sangre
7.
J Zoo Wildl Med ; 45(4): 970-2, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25632695

RESUMEN

This report describes the first case in South Australia, Australia, of Mycobacterium pinnipedii tuberculosis in a free-ranging Australian fur seal (Arctocephalus pusillus doriferus). Severe pyogranulomatous pleuropneumonia with intrahistocytic acid-fast beaded filamentous bacilli was seen on histology. M. pinnipedii was confirmed by full 24-loci mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing. Spillover concerns for public health and cattle are discussed.


Asunto(s)
Lobos Marinos , Mycobacterium/clasificación , Mycobacterium/aislamiento & purificación , Tuberculosis Pulmonar/veterinaria , Animales , Resultado Fatal , Masculino , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
8.
PeerJ ; 12: e17018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618571

RESUMEN

The African leopard (Panthera pardus pardus) has lost a significant proportion of its historical range, notably in north-western Africa and South Africa. Recent studies have explored the genetic diversity and population structure of African leopards across the continent. A notable genetic observation is the presence of two divergent mitochondrial lineages, PAR-I and PAR-II. Both lineages appeared to be distributed widely, with PAR-II frequently found in southern Africa. Until now, no study has attempted to date the emergence of either lineage, assess haplotype distribution, or explore their evolutionary histories in any detail. To investigate these underappreciated questions, we compiled the largest and most geographically representative leopard data set of the mitochondrial NADH-5 gene to date. We combined samples (n = 33) collected in an altitudinal transect across the Mpumalanga province of South Africa, where two populations of leopard are known to be in genetic contact, with previously published sequences of African leopard (n = 211). We estimate that the maternal PAR-I and PAR-II lineages diverged approximately 0.7051 (0.4477-0.9632) million years ago (Ma). Through spatial and demographic analyses, we show that while PAR-I underwent a mid-Pleistocene population expansion resulting in several closely related haplotypes with little geographic structure across much of its range, PAR-II remained at constant size and may even have declined slightly in the last 0.1 Ma. The higher genetic drift experienced within PAR-II drove a greater degree of structure with little haplotype sharing and unique haplotypes in central Africa, the Cape, KwaZulu-Natal and the South African Highveld. The phylogeographic structure of PAR-II, with its increasing frequency southward and its exclusive occurrence in south-eastern South Africa, suggests that this lineage may have been isolated in South Africa during the mid-Pleistocene. This hypothesis is supported by historical changes in paleoclimate that promoted intense aridification around the Limpopo Basin between 1.0-0.6 Ma, potentially reducing gene flow and promoting genetic drift. Interestingly, we ascertained that the two nuclear DNA populations identified by a previous study as East and West Mpumalanga correspond to PAR-I and PAR-II, respectively, and that they have come into secondary contact in the Lowveld region of South Africa. Our results suggest a subdivision of African leopard mtDNA into two clades, with one occurring almost exclusively in South Africa, and we identify the potential environmental drivers of this observed structure. We caution that our results are based on a single mtDNA locus, but it nevertheless provides a hypothesis that can be further tested with a dense sample of nuclear DNA data, preferably whole genomes. If our interpretation holds true, it would provide the first genetic explanation for the smaller observed size of leopards at the southernmost end of their range in Africa.


Asunto(s)
Panthera , Animales , Panthera/genética , Sudáfrica , Evolución Biológica , Flujo Genético , ADN Mitocondrial/genética
9.
Anaerobe ; 19: 44-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23246462

RESUMEN

Isolation and identification of obligate anaerobic bacteria is labour intensive and time consuming. This has led to the increased application of molecular tools to circumvent part of this problem. We report here the development of a rapid, accurate and cost-effective method to isolate and identify Fusobacterium necrophorum species from South Australian wallaby populations using a supplemented medium (BHIRS) in conjunction with a "Cycliplex PCR" method which involves a stepwise-selective amplification of target PCR products. This report demonstrates the complementation of phenotypic characterization by PCR for accurate and fast identification of F. necrophorum isolates from wildlife origin.


Asunto(s)
Técnicas Bacteriológicas/métodos , Fusobacterium necrophorum/aislamiento & purificación , Macropodidae/microbiología , Reacción en Cadena de la Polimerasa/métodos , Medicina Veterinaria/métodos , Animales , Australia , Medios de Cultivo/química
10.
Sci Total Environ ; 902: 166336, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591385

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is an important cause of diarrhoeal disease in human infants. EPEC strains are defined by the presence of specific virulence factors including intimin (encoded by the eae gene) and bundle forming pili (Bfp). Bfp is encoded by the bfp operon and includes the bfpA gene for the major pilus subunit. By definition, Bfp are only present in typical EPEC (tEPEC), for which, humans are considered to be the only known natural host. This study detected tEPEC in faecal samples from a wild Australian fruit bat species, the grey-headed flying-fox (Pteropus poliocephalus). Whole genome sequencing of 61 E. coli isolates from flying-foxes revealed that 21.3 % (95%CI: 13 %-33 %) were tEPEC. Phylogenetic analyses showed flying-fox tEPEC shared evolutionary lineages with human EPEC, but were predominantly novel sequence types (9 of 13) and typically harboured novel bfpA variants (11 of 13). HEp-2 cell adhesion assays showed adherence to human-derived epithelial cells by all 13 flying-fox tEPEC, indicating that they all carried functional Bfp. Using an EPEC-specific duplex PCR, it was determined that tEPEC comprised 17.4 % (95%CI: 13 %-22 %) of 270 flying-fox E. coli isolates. Furthermore, a tEPEC-specific multiplex PCR detected the eae and bfpA virulence genes in 18.0 % (95%CI: 8.0 %-33.7 %) of 506 flying-fox faecal DNA samples, with occurrences ranging from 1.3 % to 87.0 % across five geographic areas sampled over a four-year period. The identification of six novel tEPEC sequence types and five novel bfpA variants suggests flying-foxes carry bat-specific tEPEC lineages. However, their close relationship with human EPEC and functional Bfp, indicates that flying-fox tEPEC have zoonotic potential and that dissemination of flying-fox tEPEC into urban environments may pose a public health risk. The consistent detection of tEPEC in flying-foxes over extensive geographical and temporal scales indicates that both wild grey-headed flying-foxes and humans should be regarded as natural tEPEC hosts.


Asunto(s)
Quirópteros , Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Lactante , Animales , Humanos , Escherichia coli Enteropatógena/genética , Adhesinas Bacterianas/genética , Filogenia , Proteínas de Escherichia coli/genética , Australia
11.
One Health ; 17: 100652, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024267

RESUMEN

Growing reports of diverse antibiotic resistance genes in wildlife species around the world symbolises the extent of this global One Health issue. The health of wildlife is threatened by antimicrobial resistance in situations where wildlife species develop disease and require antibiotics. Chlamydial disease is a key threat for koalas in Australia, with infected koalas frequently entering wildlife hospitals and requiring antibiotic therapy, typically with chloramphenicol or doxycycline. This study investigated the occurrence and diversity of target chloramphenicol and doxycycline resistance genes (cat and tet respectively) in koala urogenital and faecal microbiomes. DNA was extracted from 394 urogenital swabs and 91 faecal swabs collected from koalas in mainland Australia and on Kangaroo Island (KI) located 14 km off the mainland, before (n = 145) and during (n = 340) the 2019-2020 wildfires. PCR screening and DNA sequencing determined 9.9% of samples (95%CI: 7.5% to 12.9%) carried cat and/or tet genes, with the highest frequency in fire-affected KI koalas (16.8%) and the lowest in wild KI koalas sampled prior to fires (6.5%). The diversity of cat and tet was greater in fire-affected koalas (seven variants detected), compared to pre-fire koalas (two variants detected). Fire-affected koalas in care that received antibiotics had a significantly higher proportion (p < 0.05) of cat and/or tet genes (37.5%) compared to koalas that did not receive antibiotics (9.8%). Of the cat and/or tet positive mainland koalas, 50.0% were Chlamydia-positive by qPCR test. Chloramphenicol and doxycycline resistance genes in koala microbiomes may contribute to negative treatment outcomes for koalas receiving anti-chlamydial antibiotics. Thus a secondary outcome of wildfires is increased risk of acquisition of cat and tet genes in fire-affected koalas that enter care, potentially exacerbating the already significant threat of chlamydial disease on Australia's koalas. This study highlights the importance of considering impacts to wildlife health within the One Health approach to AMR and identifies a need for greater understanding of AMR ecology in wildlife.

12.
Nature ; 444(7122): 1021-2, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17183308

RESUMEN

Parthenogenesis, the production of offspring without fertilization by a male, is rare in vertebrate species, which usually reproduce after fusion of male and female gametes. Here we use genetic fingerprinting to identify parthenogenetic offspring produced by two female Komodo dragons (Varanus komodoensis) that had been kept at separate institutions and isolated from males; one of these females subsequently produced additional offspring sexually. This reproductive plasticity indicates that female Komodo dragons may switch between asexual and sexual reproduction, depending on the availability of a mate--a finding that has implications for the breeding of this threatened species in captivity. Most zoos keep only females, with males being moved between zoos for mating, but perhaps they should be kept together to avoid triggering parthenogenesis and thereby decreasing genetic diversity.


Asunto(s)
Lagartos/genética , Lagartos/fisiología , Partenogénesis/fisiología , Animales , Animales de Zoológico/genética , Animales de Zoológico/fisiología , Femenino , Homocigoto , Masculino , Conducta Sexual Animal/fisiología , Reino Unido
13.
Microorganisms ; 10(8)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36014007

RESUMEN

The emergence of antimicrobial-resistant Escherichia coli in wildlife is concerning-especially resistance to clinically important beta-lactam antibiotics. Wildlife in closer proximity to humans, including in captivity and in rescue/rehabilitation centres, typically have a higher prevalence of antimicrobial-resistant E. coli compared to their free-living counterparts. Each year, several thousand Australian fruit bat pups, including the grey-headed flying fox (GHFF; Pteropus poliocephalus), require rescuing and are taken into care by wildlife rescue and rehabilitation groups. To determine the prevalence of beta-lactam-resistant E. coli in rescued GHFF pups from South Australia, faecal samples were collected from 53 pups in care. A combination of selective culture, PCR, antimicrobial susceptibility testing, whole-genome sequencing, and phylogenetic analysis was used to identify and genetically characterise beta-lactam-resistant E. coli isolates. The prevalence of amoxicillin-, amoxicillin-plus-clavulanic-acid-, and cephalosporin-resistant E. coli in the 53 pups was 77.4% (n = 41), 24.5% (n = 13), and 11.3% (n = 6), respectively. GHFF beta-lactam-resistant E. coli also carried resistance genes to aminoglycosides, trimethoprim plus sulphonamide, and tetracyclines in 37.7% (n = 20), 35.8% (n = 19), and 26.4% (n = 14) of the 53 GHFF pups, respectively, and 50.9% (n = 27) of pups carried multidrug-resistant E. coli. Twelve E. coli strain types were identified from the 53 pups, with six strains having extraintestinal pathogenic traits, indicating that they have the potential to cause blood, lung, or wound infections in GHFFs. Two lineages-E. coli ST963 and ST58 O8:H25-were associated with human extraintestinal infections. Phylogenetic analyses determined that all 12 strains were lineages associated with humans and/or domestic animals. This study demonstrates high transmission of anthropogenic-associated beta-lactam-resistant E. coli to GHFF pups entering care. Importantly, we identified potential health risks to GHFF pups and zoonotic risks for their carers, highlighting the need for improved antibiotic stewardship and biosafety measures for GHFF pups entering care.

14.
Virology ; 576: 42-51, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150229

RESUMEN

Bats are important reservoirs for viruses of public health and veterinary concern. Virus studies in Australian bats usually target the families Paramyxoviridae, Coronaviridae and Rhabdoviridae, with little known about their overall virome composition. We used metatranscriptomic sequencing to characterise the faecal virome of grey-headed flying foxes from three colonies in urban/suburban locations from two Australian states. We identified viruses from three mammalian-infecting (Coronaviridae, Caliciviridae, Retroviridae) and one possible mammalian-infecting (Birnaviridae) family. Of particular interest were a novel bat betacoronavirus (subgenus Nobecovirus) and a novel bat sapovirus (Caliciviridae), the first identified in Australian bats, as well as a potentially exogenous retrovirus. The novel betacoronavirus was detected in two sampling locations 1375 km apart and falls in a viral lineage likely with a long association with bats. This study highlights the utility of unbiased sequencing of faecal samples for identifying novel viruses and revealing broad-scale patterns of virus ecology and evolution.


Asunto(s)
Quirópteros , Coronavirus , Sapovirus , Animales , Humanos , Retroviridae/genética , Viroma , Australia , Mamíferos
15.
Sci Total Environ ; 841: 156699, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35710009

RESUMEN

Urban-living wildlife can be exposed to metal contaminants dispersed into the environment through industrial, residential, and agricultural applications. Metal exposure carries lethal and sublethal consequences for animals; in particular, heavy metals (e.g. arsenic, lead, mercury) can damage organs and act as carcinogens. Many bat species reside and forage in human-modified habitats and could be exposed to contaminants in air, water, and food. We quantified metal concentrations in fur samples from three flying fox species (Pteropus fruit bats) captured at eight sites in eastern Australia. For subsets of bats, we assessed ectoparasite burden, haemoparasite infection, and viral infection, and performed white blood cell differential counts. We examined relationships among metal concentrations, environmental predictors (season, land use surrounding capture site), and individual predictors (species, sex, age, body condition, parasitism, neutrophil:lymphocyte ratio). As expected, bats captured at sites with greater human impact had higher metal loads. At one site with seasonal sampling, bats had higher metal concentrations in winter than in summer, possibly owing to changes in food availability and foraging. Relationships between ectoparasites and metal concentrations were mixed, suggesting multiple causal mechanisms. There was no association between overall metal load and neutrophil:lymphocyte ratio, but mercury concentrations were positively correlated with this ratio, which is associated with stress in other vertebrate taxa. Comparison of our findings to those of previous flying fox studies revealed potentially harmful levels of several metals; in particular, endangered spectacled flying foxes (P. conspicillatus) exhibited high concentrations of cadmium and lead. Because some bats harbor pathogens transmissible to humans and animals, future research should explore interactions between metal exposure, immunity, and infection to assess consequences for bat and human health.


Asunto(s)
Quirópteros , Mercurio , Animales , Australia , Metales , Estaciones del Año
16.
Microb Genom ; 7(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33950805

RESUMEN

Antimicrobial-resistant Escherichia coli, particularly those resistant to critically important antimicrobials, are increasingly reported in wildlife. The dissemination of antimicrobial-resistant bacteria to wildlife indicates the far-reaching impact of selective pressures imposed by humans on bacteria through misuse of antimicrobials. The grey-headed flying fox (GHFF; Pteropus poliocephalus), a fruit bat endemic to eastern Australia, commonly inhabits urban environments and encounters human microbial pollution. To determine if GHFF have acquired human-associated bacteria, faecal samples from wild GHFF (n=287) and captive GHFF undergoing rehabilitation following illness or injury (n=31) were cultured to detect beta-lactam-resistant E. coli. Antimicrobial susceptibility testing, PCR and whole genome sequencing were used to determine phenotypic and genotypic antimicrobial resistance profiles, strain type and virulence factor profiles. Overall, 3.8 % of GHFF carried amoxicillin-resistant E. coli (wild 3.5 % and captive 6.5 %), with 38.5 % of the 13 GHFF E. coli isolates exhibiting multidrug resistance. Carbapenem (blaNDM-5) and fluoroquinolone resistance were detected in one E. coli isolate, and two isolates were resistant to third-generation cephalosporins (blaCTX-M-27 and ampC). Resistance to tetracycline and trimethoprim plus sulfamethoxazole were detected in 69.2% and 30.8 % of isolates respectively. Class 1 integrons, a genetic determinant of resistance, were detected in 38.5 % of isolates. Nine of the GHFF isolates (69.2 %) harboured extraintestinal virulence factors. Phylogenetic analysis placed the 13 GHFF isolates in lineages associated with humans and/or domestic animals. Three isolates were human-associated extraintestinal pathogenic E. coli (ST10 O89:H9, ST73 and ST394) and seven isolates belonged to lineages associated with extraintestinal disease in both humans and domestic animals (ST88, ST117, ST131, ST155 complex, ST398 and ST1850). This study provides evidence of anthropogenic multidrug-resistant and pathogenic E. coli transmission to wildlife, further demonstrating the necessity for incorporating wildlife surveillance within the One Health approach to managing antimicrobial resistance.


Asunto(s)
Quirópteros/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli/efectos de los fármacos , beta-Lactamas/farmacología , Animales , Antibacterianos/farmacología , Australia , Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Heces/microbiología , Fluoroquinolonas , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Virulencia/genética , Factores de Virulencia/genética , Zoonosis , beta-Lactamasas/genética
17.
Res Microbiol ; 172(7-8): 103879, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34506927

RESUMEN

Over the past decade human associated multidrug resistant (MDR) and hypervirulent Klebsiella pneumoniae lineages have been increasingly detected in wildlife. This study investigated the occurrence of K. pneumoniae species complex (KpSC) in grey-headed flying foxes (GHFF), an Australian fruit bat. Thirty-nine KpSC isolates were cultured from 275 GHFF faecal samples (14.2%), comprising K. pneumoniae (n = 30), Klebsiella africana (n = 8) and Klebsiella variicola subsp. variicola (n = 1). The majority (79.5%) of isolates belonged to novel sequence types (ST), including two novel K. africana STs. This is the first report of K. africana outside of Africa and in a non-human host. A minority (15.4%) of GHFF KpSC isolates shared STs with human clinical K. pneumoniae strains, of which, none belonged to MDR clonal lineages that cause frequent nosocomial outbreaks, and no isolates were characterised as hypervirulent. The occurrence of KpSC isolates carrying acquired antimicrobial resistance genes in GHFF was low (1.1%), with three K. pneumoniae isolates harbouring both fluoroquinolone and trimethoprim resistance genes. This study indicates that GHFF are not reservoirs for MDR and hypervirulent KpSC strains, but they do carry novel K. africana lineages. Health risks associated with KpSC carriage by GHFF are deemed low for the public and GHFF.


Asunto(s)
Quirópteros/microbiología , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella/aislamiento & purificación , Animales , Australia , Reservorios de Enfermedades , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Heces/microbiología , Genes Bacterianos , Humanos , Klebsiella/clasificación , Klebsiella/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Filogenia , Factores de Virulencia/análisis , Resistencia betalactámica/genética
18.
J Parasitol ; 107(4): 554-561, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270758

RESUMEN

Parasite infection pressure is suggested to be a strong driver of transmission within ecosystems. We tested if infection pressure drives seroprevalence in intermediate host species for Toxoplasma gondii. We defined Toxoplasma infection pressure to intermediate host species as the combined influence of cat abundance, environmental conditions, and its prevalence in the cat population. We sampled and tested 2 species of rodent and collated information on Toxoplasma seroprevalence in koalas, wallabies, kangaroos, and sheep. All species were sampled using equivalent methods, within a 2-yr period, and from adjacent regions of low and high Toxoplasma infection pressure. The seroprevalence of Toxoplasma in kangaroos scaled with infection pressure, but we observed no statistical difference in seroprevalence for any other species between these 2 regions. Within the region of low infection pressure, Toxoplasma seroprevalence did not differ between species. However, within the region of high Toxoplasma infection pressure, we observed large variation in seroprevalence between species. Our results demonstrate that infection pressure is not sufficient by itself, but merely necessary, to drive Toxoplasma seroprevalence in intermediate host species. Where Toxoplasma seroprevalence in an intermediate host species is already low, further reducing infection pressure will not necessarily further decrease seroprevalence in those species. This has important ramifications for the mitigation of parasite infections and suggests that reductions in Toxoplasma infection pressure, intended to reduce infections, may be most effective and applicable to species that are known to experience high rates of infection.


Asunto(s)
Toxoplasma/inmunología , Toxoplasmosis Animal/epidemiología , Animales , Anticuerpos Antiprotozoarios/sangre , Gatos , Macropodidae , Ratones , Phascolarctidae , Conejos , Ratas , Estudios Seroepidemiológicos , Ovinos , Australia del Sur/epidemiología , Toxoplasmosis Animal/transmisión
19.
Front Vet Sci ; 8: 651304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179158

RESUMEN

Little is known about the global bat souvenir trade despite previous research efforts into bat harvest for bushmeat. We screened eBay listings of bats in Australia, Canada, Italy, Switzerland, United Kingdom and USA to assess the nature and extent of the online offers. A total of 237 listings were retrieved in between the 11th and 25th of May 2020 with a median price per item of US$38.50 (range: US$8.50-2,500.00). Items on offer were mostly taxidermy (61.2%) or skull (21.1%) specimens. Overall, 32 different species of bat were advertised, most of which (n = 28) are listed as "Least Concern" on the International Union for Conservation of Nature (IUCN) Red List. One species (Nycteris javanica) is classified as "Vulnerable" and one (Eidolon helvum) as "Near Threatened." Pteropus spp. specimens were the most expensive specimens on offer and the conservations status of these species may range from "Critically Endangered" to "Data Deficient" by IUCN and the entire genus is listed in the Appendix II by the Convention on the International Trade in Endangered Species of Wild Fauna and Flora (CITES). However, the exact species concerned, and their respective conservation status, could not be confirmed based on the listings' photos. The sourcing of bat was restricted to mostly South-East Asian countries (a third of items sourced from Indonesia) and to two African countries. Our survey revealed that the online offer of bat products is diverse, abundant, and facilitated by worldwide sellers although most offered bats species are from South-East Asia. With a few exceptions, the species on offer were of little present conservation concern, however, many unknowns remain on the potential animal welfare, biosecurity, legal implications, and most importantly public health risks associated with this dark trade.

20.
Sci Rep ; 11(1): 17775, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493783

RESUMEN

Macropod progressive periodontal disease (MPPD) is a necrotizing, polymicrobial, inflammatory disease commonly diagnosed in captive macropods. MPPD is characterized by gingivitis associated with dental plaque formation, which progresses to periodontitis and then to osteomyelitis of the mandible or maxilla. However, the underlying microbial causes of this disease remain poorly understood. In this study, we collected 27 oral plaque samples and associated clinical records from 22 captive Macropodidae and Potoroidae individuals that were undergoing clinical examination at Adelaide and Monarto Zoos in South Australia (15 healthy, 7 gingivitis and 5 periodontitis-osteomyelitis samples). The V3-V4 region of the 16S ribosomal RNA gene was sequenced using an Illumina Miseq to explore links between MPPD and oral bacteria in these animals. Compositional differences were detected between the microbiota of periodontitis-osteomyelitis cases compared to healthy samples (p-value with Bonferroni correction < 0.01), as well as gingivitis cases compared to healthy samples (p-value with Bonferroni correction < 0.05) using Permutational Multivariate Analysis of Variance (PERMANOVA). An overabundance of Porphyromonas, Fusobacterium, and Bacteroides taxa was also identified in animals with MPPD compared to healthy individuals using linear discriminant analysis effect size (LEfSe; p = < 0.05). An increased abundance of Desulfomicrobium also was detected in MPPD samples (LEfSe; p < 0.05), which could potentially reflect differences in disease progression. This is the first microbiota analysis of MPPD in captive macropods, and these results support a polymicrobial pathogenesis of MPPD, suggesting that the microbial interactions underpinning MPPD may be more complex than previously documented.


Asunto(s)
Bacteroides/aislamiento & purificación , Placa Dental/veterinaria , Fusobacterium/aislamiento & purificación , Gingivitis/veterinaria , Macropodidae/microbiología , Microbiota , Periodontitis/veterinaria , Porphyromonas/aislamiento & purificación , Potoroidae/microbiología , Animales , Animales de Zoológico/microbiología , Biodiversidad , Coinfección , Placa Dental/microbiología , Progresión de la Enfermedad , Gingivitis/microbiología , Enfermedades Mandibulares/microbiología , Enfermedades Mandibulares/veterinaria , Enfermedades Maxilares/microbiología , Enfermedades Maxilares/veterinaria , Osteomielitis/microbiología , Osteomielitis/veterinaria , Periodontitis/microbiología , Australia del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA