Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 34(11): 15448-15461, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32985027

RESUMEN

The LPBN (lateral parabrachial nucleus) plays an important role in feeding control. CGRP (calcitonin gene-related peptide) LPBN neurons activation mediates the anorectic effects of different gut-derived peptides, including amylin. Amylin and its long acting analog sCT (salmon calcitonin) exert their anorectic actions primarily by directly activating neurons located in the area postrema (AP). A large proportion of projections from the AP and the adjacent nucleus of the solitary tractNTS to the LPBN, are noradrenergic (NA), and amylin-activated NAAP neurons are critical in mediating amylin's hypophagic effects. Here, we determine the functional role of NAAP amylin activated neurons to activate CGRP and non-CGRP LPBN neurons. To this end, NA was specifically depleted in the rat LPBN through a stereotaxic microinfusion of 6-OHDA, a neurotoxic agent that destroys NA terminals. While amylin (50 µg/kg) and sCT (5 µg/kg) reduced eating in sham-lesioned rats, no reduction in feeding occurred in NA-depleted animals. Further, the amylin-induced c-Fos response in the LPBN and c-Fos/CGRP colocalization were reduced in NA-depleted animals compared to controls. We conclude that AP â†’ LPBN NA signaling, through the activation of LPBN CGRP neurons, mediates part of amylin's hypophagic effect.


Asunto(s)
Anorexia/tratamiento farmacológico , Calcitonina/metabolismo , Ingestión de Alimentos/fisiología , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Neuronas/efectos de los fármacos , Norepinefrina/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Agonistas alfa-Adrenérgicos/farmacología , Agonistas de los Receptores de Amilina/farmacología , Animales , Anorexia/metabolismo , Anorexia/patología , Calcitonina/genética , Ingestión de Alimentos/efectos de los fármacos , Masculino , Núcleos Parabraquiales/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Aging Cell ; : e14289, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102875

RESUMEN

Neuronal senescence is a major risk factor for the development of many neurodegenerative disorders. The mechanisms that drive neurons to senescence remain largely elusive; however, dysregulated mitochondrial physiology seems to play a pivotal role in this process. Consequently, strategies aimed to preserve mitochondrial function may hold promise in mitigating neuronal senescence. For example, dietary restriction has shown to reduce senescence, via a mechanism that still remains far from being totally understood, but that could be at least partially mediated by mitochondria. Here, we address the role of mitochondrial inorganic polyphosphate (polyP) in the intersection between neuronal senescence and dietary restriction. PolyP is highly present in mammalian mitochondria; and its regulatory role in mammalian bioenergetics has already been described by us and others. Our data demonstrate that depletion of mitochondrial polyP exacerbates neuronal senescence, independently of whether dietary restriction is present. However, dietary restriction in polyP-depleted cells activates AMPK, and it restores some components of mitochondrial physiology, even if this is not sufficient to revert increased senescence. The effects of dietary restriction on polyP levels and AMPK activation are conserved in differentiated SH-SY5Y cells and brain tissue of male mice. Our results identify polyP as an important component in mitochondrial physiology at the intersection of dietary restriction and senescence, and they highlight the importance of the organelle in this intersection.

3.
Mol Metab ; 58: 101444, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35091058

RESUMEN

OBJECTIVE: The behavioral mechanisms and the neuronal pathways mediated by amylin and its long-acting analog sCT (salmon calcitonin) are not fully understood and it is unclear to what extent sCT and amylin engage overlapping or distinct neuronal subpopulations to reduce food intake. We here hypothesize that amylin and sCT recruit different neuronal population to mediate their anorectic effects. METHODS: Viral approaches were used to inhibit calcitonin gene-related peptide (CGRP) lateral parabrachial nucleus (LPBN) neurons and assess their role in amylin's and sCT's ability to decrease food intake in mice. In addition, to test the involvement of LPBN CGRP neuropeptidergic signaling in the mediation of amylin and sCT's effects, a LPBN site-specific knockdown was performed in rats. To deeper investigate whether the greater anorectic effect of sCT compared to amylin is due do the recruitment of additional neuronal pathways related to malaise multiple and distinct animal models tested whether amylin and sCT induce conditioned avoidance, nausea, emesis, and conditioned affective taste aversion. RESULTS: Our results indicate that permanent or transient inhibition of CGRP neurons in LPBN blunts sCT-, but not amylin-induced anorexia and neuronal activation. Importantly, sCT but not amylin induces behaviors indicative of malaise including conditioned affective aversion, nausea, emesis, and conditioned avoidance; the latter mediated by CGRPLPBN neurons. CONCLUSIONS: Together, the present study highlights that although amylin and sCT comparably decrease food intake, sCT is distinctive from amylin in the activation of anorectic neuronal pathways associated with malaise.


Asunto(s)
Depresores del Apetito , Polipéptido Amiloide de los Islotes Pancreáticos , Animales , Anorexia/inducido químicamente , Depresores del Apetito/efectos adversos , Depresores del Apetito/metabolismo , Calcitonina , Péptido Relacionado con Gen de Calcitonina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones , Náusea/metabolismo , Neuronas/metabolismo , Ratas , Vómitos
4.
Peptides ; 132: 170366, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32634450

RESUMEN

Amylin is a peptide hormone that is mainly known to be produced by pancreatic ß-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism.


Asunto(s)
Depresores del Apetito/metabolismo , Encéfalo/metabolismo , Ingestión de Alimentos/fisiología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Animales , Humanos , Hormonas Pancreáticas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA