Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 60(4): 2304-2314, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33507733

RESUMEN

The utility of two-dimensional generalized correlation spectroscopy (2D-COS) for tracking complex solid-state reactions is demonstrated using infrared spectra acquired during a photochemically induced decomposition reaction. Eleven different thin films, consisting of six monometallic and five bimetallic 2-ethylhexanoate complexes, were tracked as a function of photolysis time. Overlapping peaks in the infrared fingerprint region are readily discriminated using 2D-COS, enabling individual vibrational components to be used to distinguish whether carboxylate ligands are free/ionic or bound in a chelating, bridging, or monodentate fashion. This classification enables the decomposition mechanism to be tracked for all 11 samples, revealing that ligands bound in monodentate and bridging fashions are first converted to chelates before being lost as volatile products for all samples. The magnitude of the measured first-order rate constants for loss of chelated ligands is found to correlate linearly to the asymmetric stretching frequency of monodentate ligands but exhibits a V shape when plotted against the electronegativity of the metal center. We propose that loss of chelated ligands proceeds via C-O scission for highly electronegative transition metals but M-O scission for transition metals with low electronegativity. These results establish 2D-COS as a powerful tool to deconvolute and correlate individual components, enabling mechanistic analysis of complex chemical reactions.

2.
J Am Chem Soc ; 141(31): 12192-12196, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31328527

RESUMEN

Investigating the chemical nature of the adsorbed intermediate species on well-defined Cu single crystal substrates is crucial in understanding many electrocatalytic reactions. Herein, we systematically study the early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces in different pH electrolytes using in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). On Cu(111), for the first time, we identified surface OH species which convert to chemisorbed "O" before forming Cu2O in alkaline (0.01 M KOH) and neutral (0.1 M Na2SO4) electrolytes; while at the Cu(poly) surface, we only detected the presence of surface hydroxide. Whereas, in a strongly acidic solution (0.1 M H2SO4), sulfate replaces the hydroxyl/oxy species. This results improves the understanding of the reaction mechanisms of various electrocatalytic reactions.

3.
Anal Chem ; 91(8): 5316-5322, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30912431

RESUMEN

Plasmonic "hot spots" play a key role in surface-enhanced Raman scattering (SERS) enabling its ultrahigh surface sensitivity. Thus, precise prediction and control of the location of hot spots in surface nanostructures is of great importance. However, it is difficult to predict the exact location of hot spots due to complex plasmon competition and synergistic effects in three-dimensional (3D) multiparticle surface configurations. In this work, three types of Au@probe@SiO2 core-shell nanoparticles were prepared and a 3D hot spots matrix was assembled via a consecutive layer on layer deposition method. Combined with SERS, distinct probe molecules were integrated into different layers of the 3D multiparticle nanostructure allowing for the hot spots to be precisely located. Importantly, the hot spots could be controlled and relocated by applying different excitation wavelengths, which was verified by simulations and experimental results. This work proposes a new insight and provides a platform for precisely probing and controlling chemical reactions, which has profound implications in both surface analysis and surface plasmonics.

4.
Anal Chem ; 90(18): 10837-10842, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30136575

RESUMEN

The emerging field of plasmonics has promoted applications of optical technology, especially in plasmon-enhanced spectroscopy (PES). However, in plasmon-enhanced fluorescence (PEF), "metal loss" could significantly quench the fluorescence during the process, which dramatically limits its applications in analysis and high-resolution imaging. In this report, silver core silica shell-isolated nanoparticles (Ag@SiO2 NPs or SHINs) with a tunable thickness of shell are used to investigate the interactions between NPs and emitters by constructing coupling and noncoupling modes. The plasmonic coupling mode between Ag@SiO2 NPs and Ag film reveals an exceeding integrating spectral intensity enhancement of 330 and about 124 times that of the radiative emission rate acceleration for shell-isolated nanoparticle enhanced phosphorescence (SHINEP). The experimental findings are supported by theoretical calculations using the finite-element method (FEM). Hence, the SHINEP may provide a novel approach for understanding the interaction of plasmon and phosphorescence, and it holds great potential in surface detection analysis and singlet-oxygen-based clinical therapy.

5.
Langmuir ; 34(50): 15517-15525, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30472860

RESUMEN

Controlling the size of nanoscale entities is important because many properties of nanomaterials are directly related to the size of the particles. Gold nanoparticles represent classic materials and are of particular interest due to their potential application in a variety of fields. In this study, hexanethiol-capped gold nanoparticles are synthesized via the Brust-Schiffrin method. Synthesized nanoparticles were characterized by various analytical techniques such as transmission electron microscopy, scanning tunneling microscopy (STM), UV-visible absorption spectroscopy and electrochemical techniques. We have varied the molar ratio of gold to the protecting agent (hexanethiol) to discover the effect of gold-to-hexanethiol ligand ratio on the size of gold particles. The clear correlation between particle size and molar ratio is found that the averaged particle size decreases from 4.28 ± 0.83 to 1.54 ± 0.67 nm as the gold-to-ligand molar ratio changes from 1:1 to 1:9. In contrast to a recent report that thiolated gold nanoparticles are under spontaneous disintegration when they are assembled on a gold substrate, our STM experiments proved that these gold nanoparticles can form a stable monolayer or multiple layers on the platinum electrode without observing disintegration within 72 h. Therefore, our STM experiments demonstrate that the disintegration behavior of gold nanoparticles is related to the type of ligands and the nature of substrate materials. In electrochemical experiments, these gold nanoparticles displayed an electrochemical quantized charging effect, making these nanoparticles useful in the device applications such as electrochemical or biological sensors.

6.
Angew Chem Int Ed Engl ; 57(25): 7523-7527, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29645335

RESUMEN

Tip-enhanced Raman spectroscopy can provide molecular fingerprint information with ultrahigh spatial resolution, but the tip will be easily contaminated, thus leading to artifacts. It also remains a great challenge to establish tip-enhanced fluorescence because of the quenching resulting from the proximity of the metal tip. Herein, we report shell-isolated tip-enhanced Raman and fluorescence spectroscopies by employing ultrathin shell-isolated tips fabricated by atomic layer deposition. Such shell-isolated tips not only show outstanding electromagnetic field enhancement in TERS but also exclude interference by contaminants, thus greatly promoting applications in solution. Tip-enhanced fluorescence has also been achieved using these shell-isolated tips, with enhancement factors of up to 1.7×103 , consistent with theoretical simulations. Furthermore, tip-enhanced Raman and fluorescence signals are acquired simultaneously, and their relative intensities can be manipulated by changing the shell thickness. This work opens a new avenue for ultrahigh resolution surface analysis using plasmon-enhanced spectroscopies.

7.
J Am Chem Soc ; 139(17): 6114-6119, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28391689

RESUMEN

Described here is a semiquantitative theoretical treatment of the kinetics of outer sphere electrochemical reactions. The framework presented here, which is based on simple physical arguments, predicts heterogeneous rate constants consistent with previous experimental observations (k0 > 10 cm/s). This theory is applied to the analysis of voltammetry experiments involving ultramicroelectrodes modified with thin, insulating oxide films where electronic tunneling between the electrode and redox species in solution (metal-insulator-solution tunneling) is expected to play a prominent role. It is shown that analysis of the voltammetric response of an outer sphere redox couple can be used to track changes in the structure of the adsorbed insulating layer.

9.
Anal Methods ; 12(27): 3545-3550, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32672251

RESUMEN

Here, we investigated the sealing quality between a microwire disk and the surrounding glass sheath of platinum disk ultramicroelectrodes (UMEs) using outer-sphere (ferrocene methanol, FcMeOH, oxidation) and inner-sphere electrochemical reactions (hydrogen underpotential deposition (HUPD) and the hydrogen evolution reaction (HER)) by the cyclic voltammetry (CV) approach. The tilt aspect in the CV curves is ascribed to the leakage of the electrolyte solution between the microelectrode wire and the glass sheath, causing an iR drop which shows the resistive nature of CV. The resistive nature of CV was analyzed by performing the HER using both poorly and well-sealed disk UMEs. Scan rate dependent double-layer capacitance (Cdl) data confirm the leak between a glass-wire interface in the UMEs. Further, we showed a quantitative treatment for the sealing assessment using analytical expressions. Overall, we demonstrate a rapid check procedure of the sealing quality in fabricating Pt disk UMEs. The simple procedure presented in this work can be used to evaluate the sealing quality of other types of micro/nanoelectrodes during their fabrication.

10.
Nanoscale ; 6(24): 15117-26, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25372883

RESUMEN

Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au(144) clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au(144)-MPCs and EC-STS experiments with laterally separated individual Au(144)-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au(144)-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.

11.
ACS Nano ; 7(10): 8940-52, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24007327

RESUMEN

We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4(-) and SO4(2-) ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA