Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(47): e2311565120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956285

RESUMEN

Dementia is a brain disease which results in irreversible and progressive loss of cognition and motor activity. Despite global efforts, there is no simple and reliable diagnosis or treatment option. Current diagnosis involves indirect testing of commonly inaccessible biofluids and low-resolution brain imaging. We have developed a portable, wireless readout-based Graphene field-effect transistor (GFET) biosensor platform that can detect viruses, proteins, and small molecules with single-molecule sensitivity and specificity. We report the detection of three important amyloids, namely, Amyloid beta (Aß), Tau (τ), and α-Synuclein (αS) using DNA aptamer nanoprobes. These amyloids were isolated, purified, and characterized from the autopsied brain tissues of Alzheimer's Disease (AD) and Parkinson's Disease (PD) patients. The limit of detection (LoD) of the sensor is 10 fM, 1-10 pM, 10-100 fM for Aß, τ, and αS, respectively. Synthetic as well as autopsied brain-derived amyloids showed a statistically significant sensor response with respect to derived thresholds, confirming the ability to define diseased vs. nondiseased states. The detection of each amyloid was specific to their aptamers; Aß, τ, and αS peptides when tested, respectively, with aptamers nonspecific to them showed statistically insignificant cross-reactivity. Thus, the aptamer-based GFET biosensor has high sensitivity and precision across a range of epidemiologically significant AD and PD variants. This portable diagnostic system would allow at-home and POC testing for neurodegenerative diseases globally.


Asunto(s)
Enfermedad de Alzheimer , Aptámeros de Nucleótidos , Grafito , Enfermedad de Parkinson , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/diagnóstico , Biomarcadores , Proteínas tau
2.
Proc Natl Acad Sci U S A ; 119(28): e2206521119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35763566

RESUMEN

We have developed a DNA aptamer-conjugated graphene field-effect transistor (GFET) biosensor platform to detect receptor-binding domain (RBD), nucleocapsid (N), and spike (S) proteins, as well as viral particles of original Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus and its variants in saliva samples. The GFET biosensor is a label-free, rapid (≤20 min), ultrasensitive handheld wireless readout device. The limit of detection (LoD) and the limit of quantitation (LoQ) of the sensor are 1.28 and 3.89 plaque-forming units (PFU)/mL for S protein and 1.45 and 4.39 PFU/mL for N protein, respectively. Cognate spike proteins of major variants of concern (N501Y, D614G, Y453F, Omicron-B1.1.529) showed sensor response ≥40 mV from the control (aptamer alone) for fM to nM concentration range. The sensor response was significantly lower for viral particles and cognate proteins of Middle East Respiratory Syndrome (MERS) compared to SARS-CoV-2, indicating the specificity of the diagnostic platform for SARS-CoV-2 vs. MERS viral proteins. During the early phase of the pandemic, the GFET sensor response agreed with RT-PCR data for oral human samples, as determined by the negative percent agreement (NPA) and positive percent agreement (PPA). During the recent Delta/Omicron wave, the GFET sensor also reliably distinguished positive and negative clinical saliva samples. Although the sensitivity is lower during the later pandemic phase, the GFET-defined positivity rate is in statistically close alignment with the epidemiological population-scale data. Thus, the aptamer-based GFET biosensor has a high level of precision in clinically and epidemiologically significant SARS-CoV-2 variant detection. This universal pathogen-sensing platform is amenable for a broad range of public health applications and real-time environmental monitoring.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Grafito , SARS-CoV-2 , Tecnología Inalámbrica , COVID-19/diagnóstico , Humanos , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Autoevaluación
3.
Artículo en Inglés | MEDLINE | ID: mdl-38083446

RESUMEN

In the wake of the COVID-19 pandemic, there has been a need for reliable diagnostic testing. However, state-of-the-art detection methods rely on laboratory tests and also vary in accuracy. We evaluate that the usage of a graphene field-effect-transistor (GFET) coupled with machine learning can be a promising alternate diagnostic testing method. We processed the current-voltage data gathered from the GFET sensors to assess information about the presence of COVID-19 in biosamples. We perform binary classification using the following machine learning algorithms: Linear Discriminant Analysis (LDA), Support Vector Machines (SVM) with the Radial Basis Function (RBF) kernel, and K-Nearest Neighbors (KNN) in conjunction with Principal Component Analysis (PCA). We find that LDA and SVM with RBF proved to be the most accurate in identifying positive and negative samples, with accuracies of 99% and 98.5%, respectively. Based on these results, there is promise to develop a bioelectronic diagnostic method for COVID-19 detection by combining GFET technology with machine learning.


Asunto(s)
COVID-19 , Grafito , Humanos , Pandemias , COVID-19/diagnóstico , Algoritmos , Aprendizaje Automático
4.
Commun Biol ; 5(1): 794, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941353

RESUMEN

Quantitative phase imaging (QPI) measures the growth rate of individual cells by quantifying changes in mass versus time. Here, we use the breast cancer cell lines MCF-7, BT-474, and MDA-MB-231 to validate QPI as a multiparametric approach for determining response to single-agent therapies. Our method allows for rapid determination of drug sensitivity, cytotoxicity, heterogeneity, and time of response for up to 100,000 individual cells or small clusters in a single experiment. We find that QPI EC50 values are concordant with CellTiter-Glo (CTG), a gold standard metabolic endpoint assay. In addition, we apply multiparametric QPI to characterize cytostatic/cytotoxic and rapid/slow responses and track the emergence of resistant subpopulations. Thus, QPI reveals dynamic changes in response heterogeneity in addition to average population responses, a key advantage over endpoint viability or metabolic assays. Overall, multiparametric QPI reveals a rich picture of cell growth by capturing the dynamics of single-cell responses to candidate therapies.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA