RESUMEN
BACKGROUND: Chemotherapy-induced cognitive impairment (CICI) is a well-recognized side effect of breast cancer treatment. However, prospective long-term evaluations of CICI using standardized neuropsychological tests are scarce. PATIENTS AND METHODS: This prospective longitudinal cohort study investigated cognitive dysfunction and its impact on quality of life and everyday functioning in patients with breast cancer receiving first-line chemotherapy compared to patients with breast cancer without chemotherapy. Assessment occurred prior to chemotherapy, postchemotherapy (median 6 months), and 2-3 years later. We used standardized neuropsychological tests, questionnaires, and scales to assess patients' quality of life and functioning. Additionally, serum analysis for neurodegenerative markers and autoantibodies was conducted. RESULTS: We included nâ =â 53 patients. Overall cognitive function declined statistically significantly (Pâ =â .046) postchemotherapy compared to control patients, mostly driven by a reduced figural memory (Pâ =â .011). Patients who received chemotherapy showed a greater reduction in quality of life (increased fatigue symptoms, Pâ =â .023; reduced Karnofsky index, P < .001); however, without a statistically significant effect on cognitive decline. The neurodegenerative markers Neurofilament light chain (NfL) and phosphorylated Neurofilament heavy chain (pNfH) increased statistically significantly (P < .001) postchemotherapy and pNfH correlated with overall cognitive function. After 2-3 years, both cognitive performance and quality of life were comparable between chemotherapy-treated and control patients. CONCLUSION: Our findings suggest that chemotherapy statistically significantly contributes to overall cognitive dysfunction in patients with breast cancer, which disappears after 2-3 years, indicating a recovery in both objectively measurable cognitive function and subjective quality of life. Future research should examine larger sample sizes and explore screening indicators, particularly pNfH.
RESUMEN
BACKGROUND: Central nervous system (CNS) injury following brain-directed radiotherapy remains a major challenge. Proton radiotherapy (PRT) minimizes radiation to healthy brain, potentially limiting sequelae. We characterized CNS radiotoxicity, including radiation-induced leukoencephalopathy (RIL), brain tissue necrosis (TN), and cerebral microbleeds (CMB), in glioma patients treated with PRT or photons (XRT). PATIENTS AND METHODS: Thirty-four patients (19 male; median age 39.6 years) with WHO grade 2-3 gliomas treated with partial cranial radiotherapy (XRT [nâ =â 17] vs PRT[nâ =â 17]) were identified and matched by demographic/clinical criteria. Radiotoxicity was assessed longitudinally for 3 years post-radiotherapy via serial analysis of T2/FLAIR- (for RIL), contrast-enhanced T1- (for TN), and susceptibility (for CMB)-weighted MRI sequences. RIL was rated at whole-brain and hemispheric levels using a novel Fazekas scale-informed scoring system. RESULTS: The scoring system proved reliable (ICCâ >â 0.85). Both groups developed moderate-to-severe RIL (62%[XRT]; 71%[PRT]) within 3 years; however, XRT was associated with persistent RIL increases in the contralesional hemisphere, whereas contralesional hemispheric RIL plateaued with PRT at 1-year post-radiotherapy (tâ =â 2.180; Pâ =â .037). TN rates were greater with PRT (6%[XRT] vs 18%[PRT]; Pâ =â ns). CMB prevalence (76%[XRT]; 71%[PRT]) and burden (mean #CMB: 4.0[XRT]; 4.2[PRT]) were similar; however, XRT correlated with greater contralesional hemispheric CMB burden (27%[XRT]; 17%[PRT]; X2â =â 4.986; Pâ =â .026), whereas PRT-specific CMB clustered at the radiation field margin (X2â =â 14.7; Pâ =â .002). CONCLUSIONS: CNS radiotoxicity is common and progressive in glioma patients. Injury patterns suggest radiation modality-specificity as RIL, TN, and CMB exhibit unique spatiotemporal differences following XRT vs PRT, likely reflecting underlying dosimetric and radiobiological differences. Familiarity with such injury patterns is essential to improve patient management. Prospective studies are needed to validate these findings and assess their impacts on neurocognitive function.
RESUMEN
OPINION STATEMENT: Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Terapia de Protones , Niño , Adulto , Humanos , Terapia de Protones/efectos adversos , Protones , Neoplasias del Sistema Nervioso Central/radioterapia , Fotones/uso terapéutico , Sistema Nervioso Central , Dosificación RadioterapéuticaRESUMEN
Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent, potentially irreversible adverse effect of cytotoxic chemotherapy often leading to a reduction or discontinuation of treatment which negatively impacts patients' prognosis. To date, however, neither predictive biomarkers nor preventive treatments for CIPN are available, which is partially due to a lack of suitable experimental models. We therefore aimed to evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for CIPN. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to axonal blebbing and a dose dependent decline of cell viability in clinically relevant IC50 ranges, which was not observed for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. Paclitaxel treatment effects were less pronounced after 24 h but prominent when treatment was applied for 72 h. Global transcriptome analyses performed at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways. We further evaluated if known neuroprotective strategies can be reproduced in iPSC-DSN and observed protective effects of lithium replicating findings from rodent dorsal root ganglia cells. Comparing sensory neurons derived from two different healthy donors, we found preliminary evidence that these cell lines react differentially to neurotoxic drugs as expected from the variable presentation of CIPN in patients. In conclusion, iPSC-DSN are a promising platform to study the pathogenesis of CIPN and to evaluate neuroprotective treatment strategies. In the future, the application of patient-specific iPSC-DSN could open new avenues for personalized medicine with individual risk prediction, choice of chemotherapeutic compounds and preventive treatments.
Asunto(s)
Antineoplásicos/toxicidad , Axones/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Axones/patología , Línea Celular , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Células Madre Pluripotentes Inducidas/patología , Células Receptoras Sensoriales/patología , Imagen de Lapso de Tiempo/métodosRESUMEN
BACKGROUND: It was previously reported that high salt dietary conditions can drive autoimmunity and worsen severity and symptoms of autoimmune diseases. Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a common autoimmune condition of the peripheral nervous system which leads to progressive paralysis and sensory deficits due to a demyelination and secondary axonal loss of peripheral nerves. We used a previously described model with a knockout of CD86 in non-obese diabetic mice (CD86-/- NOD), which results in the spontaneous development of an autoimmune peripheral neuropathy similar to CIDP and investigated the influence of a high salt diet on functional impairment, electrophysiological parameters, demyelination and neuroinflammation in these mice. METHODS: At seven weeks of age, asymptomatic female CD86-/- NOD mice were randomly assigned to a normal or high salt diet containing 4% sodium chloride in food and 1% in water. The diet was continued for a total of 30â¯weeks. RESULTS: Mice on the high salt diet showed a delayed onset of clinical symptoms and an ameliorated disease course with a reduced decline of locomotor function. Furthermore, electrophysiological parameters of neuropathy and demyelination were attenuated in mice on the high salt diet, which was confirmed with histological analysis. Additionally, we observed a reduced immune cell infiltration of sciatic nerves in mice which had received the high salt diet. CONCLUSIONS: We demonstrate beneficial effects of high salt diet regarding disease progression, functional, electrophysiological and histological parameters in a transgenic mouse model of spontaneous autoimmune neuropathy.
Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/patología , Cloruro de Sodio Dietético/farmacología , Animales , Femenino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Distribución AleatoriaRESUMEN
Suramin is a trypan blue analogon originally developed to treat protozoan infections, which was found to have diverse antitumor effects. One of the most severe side effects in clinical trials was the development of a peripheral sensory-motor polyneuropathy. In this study, we aimed to investigate suramin-induced neuropathy with a focus on calcium (Ca2+) homeostasis as a potential pathomechanism. Adult C57Bl/6 mice treated with a single injection of 250 mg/kg bodyweight suramin developed locomotor and sensory deficits, which were confirmed by electrophysiological measurements showing a predominantly sensory axonal-demyelinating polyneuropathy. In a next step, we used cultured dorsal root ganglia neurons (DRGN) as an in vitro cell model to further investigate underlying pathomechanisms. Cell viability of DRGN was significantly decreased after 24-hour suramin treatment with a calculated IC50 of 283 µM. We detected a suramin-induced Ca2+ influx into DRGN from the extracellular space, which could be reduced with the voltage-gated calcium channel (VGCC) inhibitor nimodipine. Co-incubation of suramin and nimodipine partially improved cell viability of DRGN after suramin exposure. In summary, we describe suramin-induced neurotoxic effects on DRGN as well as potentially neuroprotective agents targeting intracellular Ca2+ dyshomeostasis.
Asunto(s)
Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Neurotoxinas/efectos adversos , Suramina/efectos adversos , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ganglios Espinales/citología , Ratones , Modelos Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polineuropatías/tratamiento farmacológico , Polineuropatías/etiología , Polineuropatías/fisiopatologíaRESUMEN
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy. The frequency of CIPN ranges from one in three to almost all patients depending on type of chemotherapy and dose. It causes symptoms that can range from sensitivity to touch and numbness to neuropathic pain in hands and feet. CIPN is notoriously difficult to grade objectively and has mostly relied on a clinician- or patient-based rating that is subjective and poorly reproducible. Thus, considerable effort has been aimed at identifying objective biomarkers of CIPN. Recent in vitro, animal, and clinical studies suggest that neurofilament light chain (NFL), a structural neuronal protein, may be an objective biomarker of CIPN. NFL released from cells to cell culture media reflects in vitro neurotoxicity, while NFL in serum reflects neuronal damage caused by chemotherapy in rodent models. Finally, NFL in serum may be a diagnostic biomarker of CIPN, but its prognostic ability to predict CIPN requires prospective evaluation. We discuss current limitations and future perspectives on the use of NFL as a preclinical and clinical biomarker of CIPN.
Asunto(s)
Antineoplásicos , Biomarcadores , Proteínas de Neurofilamentos , Enfermedades del Sistema Nervioso Periférico , Humanos , Proteínas de Neurofilamentos/sangre , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/sangre , Biomarcadores/sangre , Animales , Antineoplásicos/efectos adversosRESUMEN
The rise of cancer immunotherapy has been a milestone in clinical oncology. Above all, immune checkpoint inhibitor treatment (ICI) with monoclonal antibodies targeting programmed cell death protein 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has improved survival rates for an increasing number of malignancies. However, despite the clinical benefits, ICI-related autoimmunity has become a significant cause of non-relapse-related morbidity and mortality. Neurological immune-related adverse events (irAE-n) are particularly severe toxicities with a high risk for chronic illness, long-term steroid dependency, and early ICI treatment termination. While the clinical characteristics of irAE-n are well described, little is known about underlying immune mechanisms and potential biomarkers. Recently, high frequencies of neuronal autoantibodies in patients with irAE-n have been reported, however, their clinical relevance is unclear. Here, we present a dataset on neuronal autoantibody profiles in ICI-treated cancer patients with and without irAE-n, which was generated to investigate the potential role of neuronal autoantibodies in ICI-induced autoimmunity. Between September 2017 and January 2022 serum samples of 29 cancer patients with irAE-n post-ICI treatment) and 44 cancer control patients without high-grade immune-related adverse events (irAEs, n = 44 pre- and post-ICI treatment) were collected and tested for a large panel of brain-reactive and neuromuscular autoantibodies using indirect immunofluorescence and immunoblot assays. Prevalence of autoantibodies was compared between the groups and correlated with clinical characteristics such as outcome and irAE-n manifestation. These data represent the first systematic comparison of neuronal autoantibody profiles between ICI-treated cancer patients with and without irAE-n, providing valuable information for both researchers and clinicians. In the future, this dataset may be valuable for meta-analyses on the prevalence of neuronal autoantibodies in cancer patients.
RESUMEN
BACKGROUND: Neurologic immune-related adverse events (irAE-n) are rare but severe toxicities of immune checkpoint inhibitor (ICI) treatment. To overcome diagnostic and therapeutic challenges, a better mechanistic understanding of irAE-n is paramount. METHODS: In this observational cohort study, we collected serum and peripheral blood samples from 34 consecutive cancer patients with irAE-n (during acute illness) and 49 cancer control patients without irAE-n (pre- and on-ICI treatment, n = 44 without high-grade irAEs, n = 5 with high-grade nonneurologic irAEs). Patients received either anti-programmed cell death protein (PD)-1 or anti-PD ligand-1 monotherapy or anti-PD-1/anti-cytotoxic T-lymphocyte-associated protein-4 combination therapy. Most common cancers were melanoma, lung cancer, and hepatocellular carcinoma. Peripheral blood immune profiling was performed using 48-marker single-cell mass cytometry and a multiplex cytokine assay. RESULTS: During acute illness, patients with irAE-n presented higher frequencies of cluster of differentiation (CD)8+ effector memory type (EM-)1 and central memory (CM) T cells compared to controls without irAEs. Multiorgan immunotoxicities (neurologic + nonneurologic) were associated with higher CD8+ EM1 T cell counts. While there were no B cell changes in the overall cohort, we detected a marked decrease of IgD- CD11c+ CD21low and IgD- CD24+ CD21high B cells in a subgroup of patients with autoantibody-positive irAE-n. We further identified signatures indicative of enhanced chemotaxis and inflammation in irAE-n patients and discovered C-X-C motif chemokine ligand (CXCL)10 as a promising marker to diagnose high-grade immunotoxicities such as irAE-n. CONCLUSIONS: We demonstrate profound and partly subgroup-specific immune cell dysregulation in irAE-n patients, which may guide future biomarker development and targeted treatment approaches.
Asunto(s)
Neoplasias Pulmonares , Melanoma , Humanos , Enfermedad Aguda , Autoinmunidad , Ligandos , Estudios RetrospectivosRESUMEN
Background: Neurological immune-related adverse events (irAE-n) are severe and potentially fatal toxicities of immune checkpoint inhibitors (ICI). To date, the clinical significance of neuronal autoantibodies in irAE-n is poorly understood. Here, we characterize neuronal autoantibody profiles in patients with irAE-n and compare these with ICI-treated cancer patients without irAE-n. Methods: In this cohort study (DRKS00012668), we consecutively collected clinical data and serum samples of 29 cancer patients with irAE-n (n = 2 pre-ICI, n = 29 post-ICI) and 44 cancer control patients without irAE-n (n = 44 pre- and post-ICI). Using indirect immunofluorescence and immunoblot assays, serum samples were tested for a large panel of neuromuscular and brain-reactive autoantibodies. Results: IrAE-n patients and controls received ICI treatment targeting programmed death protein (PD-)1 (61% and 62%), programmed death ligand (PD-L)1 (18% and 33%) or PD-1 and cytotoxic T-lymphocyte-associated protein (CTLA-)4 (21% and 5%). Most common malignancies were melanoma (both 55%) and lung cancer (11% and 14%). IrAE-n affected the peripheral nervous system (59%), the central nervous system (21%), or both (21%). Prevalence of neuromuscular autoantibodies was 63% in irAE-n patients, which was higher compared to ICI-treated cancer patients without irAE-n (7%, p <.0001). Brain-reactive autoantibodies targeting surface (anti-GABABR, -NMDAR, -myelin), intracellular (anti-GFAP, -Zic4, -septin complex), or unknown antigens were detected in 13 irAE-n patients (45%). In contrast, only 9 of 44 controls (20%) presented brain-reactive autoantibodies before ICI administration. However, seven controls developed de novo brain-reactive autoantibodies after ICI initiation, therefore, prevalence of brain-reactive autoantibodies was comparable between ICI-treated patients with and without irAE-n (p = .36). While there was no clear association between specific brain-reactive autoantibodies and clinical presentation, presence of at least one of six selected neuromuscular autoantibodies (anti-titin, anti-skeletal muscle, anti-heart muscle, anti-LRP4, anti-RyR, anti-AchR) had a sensitivity of 80% (95% CI 0.52-0.96) and a specificity of 88% (95% CI 0.76-0.95) for the diagnosis of myositis, myocarditis, or myasthenia gravis. Conclusion: Neuromuscular autoantibodies may serve as a feasible marker to diagnose and potentially predict life-threatening ICI-induced neuromuscular disease. However, brain-reactive autoantibodies are common in both ICI-treated patients with and without irAE-n, hence, their pathogenic significance remains unclear.
Asunto(s)
Enfermedades del Sistema Inmune , Neoplasias Pulmonares , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Autoanticuerpos , Estudios de CohortesRESUMEN
NCS1 (Neuronal calcium sensor protein 1) encodes a highly conserved calcium binding protein abundantly expressed in neurons. It modulates intracellular calcium homeostasis, calcium-dependent signaling pathways as well as neuronal transmission and plasticity. Here, we generated a NCS1 knockout human induced pluripotent stem cell (hiPSC) line using CRISPR-Cas9 genome editing. It shows regular expression of pluripotent markers, normal iPSC morphology and karyotype as well as no detectable off-target effects on top 6 potentially affected genes. This newly generated cell line constitutes a valuable tool for studying the role of NCS1 in the pathophysiology of various neuropsychiatric disorders and non-neurological disease.
Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes Inducidas , Humanos , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Técnicas de Inactivación de Genes , Calcio/metabolismo , Edición GénicaRESUMEN
Neurotoxic phenomena are among the most common side effects of cytotoxic agents. The development of chemotherapy-induced polyneuropathy (CIPN) is a well-recognized adverse reaction in the peripheral nervous system, while changes of cognitive functions (post-chemotherapy cognitive impairment (PCCI)) are more diffuse and have only recently drawn scientific interest. PCCI in patients most often displays as short-term memory loss, reduced multitasking ability or deficits in language. Not least, due to a lack of preclinical human model systems, the underlying molecular mechanisms are poorly understood, and treatments are missing. We thus investigated whether induced pluripotent stem cell (iPSC)-derived brain organoids can serve as a human model system for the study of chemotherapy induced central nervous system toxicity. We robustly generated mature brain organoids from iPSC-derived neuronal precursor cells (NPC), which showed a typical composition with 1) dividing NPCs forming ventricle like structures 2) matured neurons and 3) supporting glial cells closer to the surface. Furthermore, upon stimulation the brain organoids showed functional signaling. When exposed to increasing concentrations of paclitaxel, a frequently used chemotherapy drug, we observed time dependent neurotoxicity with an EC50 of 153 nM, comparable to a published murine model system. Histological analysis after paclitaxel exposure demonstrated dose dependent apoptosis induction and reduced proliferation in the organoids with further Western blot analyses indicating the degradation of neuronal calcium sensor one protein (NCS-1) and activation of Caspase-3. We could also provide evidence that paclitaxel treatment negatively affects the pool of neuronal and astrocyte precursor cells as well as mature neurons. In summary our data suggests that human iPSC derived brain organoids are a promising preclinical model system to investigate molecular mechanisms underlying PCCI and to develop novel prevention and treatment strategies.
RESUMEN
Introduction: Chemotherapy-induced polyneuropathy (CIPN) and post-chemotherapy cognitive impairment (PCCI) are frequent side effects of paclitaxel treatment. CIPN/PCCI are potentially irreversible, reduce quality of life and often lead to treatment limitations, which affect patients' outcome. We previously demonstrated that paclitaxel enhances an interaction of the Neuronal calcium sensor-1 protein (NCS-1) with the Inositol-1,4,5-trisphosphate receptor (InsP3R), which disrupts calcium homeostasis and triggers neuronal cell death via the calcium-dependent protease calpain in dorsal root ganglia neurons and neuronal precursor cells. Prophylactic treatment of rodents with lithium inhibits the NCS1-InsP3R interaction and ameliorates paclitaxel-induced polyneuropathy and cognitive impairment, which is in part supported by limited retrospective clinical data in patients treated with lithium carbonate at the time of chemotherapy. Currently no data are available from a prospective clinical trial to demonstrate its efficacy. Methods and analysis: The PREPARE study will be conducted as a multicenter, randomized, double-blind, placebo-controlled phase-2 trial with parallel group design. N = 84 patients with breast cancer will be randomized 1:1 to either lithium carbonate treatment (targeted serum concentration 0.5-0.8 mmol/l) or placebo with sham dose adjustments as add-on to (nab-) paclitaxel. The primary endpoint is the validated Total Neuropathy Score reduced (TNSr) at 2 weeks after the last (nab-) paclitaxel infusion. The aim is to show that the lithium carbonate group is superior to the placebo group, meaning that the mean TNSr after (nab-) paclitaxel is lower in the lithium carbonate group than in the placebo group. Secondary endpoints include: (1) severity of CIPN, (2) amount and dose of pain medication, (3) cumulative dose of (nab-) paclitaxel, (4) patient-reported symptoms of CIPN, quality of life and symptoms of anxiety and depression, (5) severity of cognitive impairment, (6) hippocampal volume and changes in structural/functional connectivity and (7) serum Neurofilament light chain protein concentrations. Ethics and dissemination: The study protocol was approved by the Berlin ethics committee (reference: 21/232 - IV E 10) and the respective federal agency (Bundesinstitut für Arzneimittel und Medizinprodukte, reference: 61-3910-4044771). The results of the study will be published in peer-reviewed medical journals as well as presented at relevant (inter)national conferences. Clinical trial registration: [https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027165], identifier [DRKS00027165].
RESUMEN
BACKGROUNDPaclitaxel chemotherapy frequently induces dose-limiting sensory axonal polyneuropathy. Given that sensory symptoms are challenging to assess objectively in clinical practice, an easily accessible biomarker for chemotherapy-induced polyneuropathy (CIPN) holds the potential to improve early diagnosis. Here, we describe neurofilament light chain (NFL), a marker for neuroaxonal damage, as a translational surrogate marker for CIPN.METHODSNFL concentrations were measured in an in vitro model of CIPN, exposing induced pluripotent stem cell-derived sensory neurons (iPSC-DSNs) to paclitaxel. Patients with breast or ovarian cancer undergoing paclitaxel chemotherapy, breast cancer control patients without chemotherapy, and healthy controls were recruited in a cohort study and examined before chemotherapy (V1) and after 28 weeks (V2, after chemotherapy). CIPN was assessed by the validated Total Neuropathy Score reduced (TNSr), which combines patient-reported symptoms with data from clinical examinations. Serum NFL (NFLs) concentrations were measured at both visits with single-molecule array technology.RESULTSNFL was released from iPSC-DSNs upon paclitaxel incubation in a dose- and time-dependent manner and was inversely correlated with iPSC-DSN viability. NFLs strongly increased in paclitaxel-treated patients with CIPN, but not in patients receiving chemotherapy without CIPN or controls, resulting in an 86% sensitivity and 87% specificity. An NFLs increase of +36 pg/mL from baseline was associated with a predicted CIPN probability of more than 0.5.CONCLUSIONNFLs was correlated with CIPN development and severity, which may guide neurotoxic chemotherapy in the future.TRIAL REGISTRATIONClinicalTrials.gov NCT02753036.FUNDINGDeutsche Forschungsgemeinschaft (EXC 257 NeuroCure), BMBF (Center for Stroke Research Berlin, 01 EO 0801), Animalfree Research, EU Horizon 2020 Innovative Medicines Initiative 2 Joint Undertaking (TransBioLine, 821283), Charité 3R - Replace - Reduce - Refine.
Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Polineuropatías , Antineoplásicos/efectos adversos , Biomarcadores , Estudios de Cohortes , Humanos , Proteínas de Neurofilamentos , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Polineuropatías/inducido químicamente , Polineuropatías/diagnósticoRESUMEN
AIM: Immune checkpoint inhibitor-induced encephalitis (ICI-iE) is a rare but life-threatening toxicity of immune checkpoint inhibitor treatment. We aim to identify the characteristics of ICI-iE and describe factors that discriminate it from herpes simplex virus (HSV)-1 encephalitis and anti-leucine-rich glioma-inactivated 1 (anti-LGI1) encephalitis, as two alternative entities of encephalitis. METHODS: In this retrospective multicentre cohort study, we collected patients with ICI-iE reported to the Side Effect Registry Immuno-Oncology from January 2015 to September 2021 and compared their clinical features and outcome with 46 consecutive patients with HSV-1 or anti-LGI1 encephalitis who were treated at a German neurological referral centre. RESULTS: Thirty cases of ICI-iE, 25 cases of HSV-1 encephalitis and 21 cases of anti-LGI1 encephalitis were included. Clinical presentation of ICI-iE was highly variable and resembled that of HSV-1 encephalitis, while impairment of consciousness (66% vs. 5%, p = .007), confusion (83% vs. 43%; p = .02), disorientation (83% vs. 29%; p = .007) and aphasia (43% vs. 0%; p = .007) were more common in ICI-iE than in anti-LGI1 encephalitis. Antineuronal antibodies (17/18, 94%) and MRI (18/30, 60%) were mostly negative in ICI-iE, but cerebrospinal fluid (CSF) showed pleocytosis and/or elevated protein levels in almost all patients (28/29, 97%). Three patients (10%) died of ICI-iE. Early immunosuppressive treatment was associated with better outcome (r = 0.43). CONCLUSIONS: ICI-iE is a heterogeneous entity without specific clinical features. CSF analysis has the highest diagnostic value, as it reveals inflammatory changes in most patients and enables the exclusion of infection. Early treatment of ICI-iE is essential to prevent sequelae and death.
Asunto(s)
Encefalitis , Glioma , Herpesvirus Humano 1 , Autoanticuerpos , Estudios de Cohortes , Encefalitis/inducido químicamente , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Péptidos y Proteínas de Señalización Intracelular , Leucina , Estudios RetrospectivosRESUMEN
Over the past decade, cancer immunotherapy with immune checkpoint inhibitors (ICIs) has significantly improved the outcome of many malignancies. However, with the broad use of ICIs, neurological immune related adverse events (irAE) are increasingly recognized. ICI-induced encephalitis (ICI-iE) is a particularly severe irAE, often leading to treatment termination, long-term sequalae or death. Despite its high morbidity and mortality, data on clinical features and diagnostic criteria are limited. We aimed to define clinical, radiologic and laboratory characteristics of ICI-iE and identify factors that discriminate it from anti-leucine-rich glioma-inactivated (anti-LGI)-1 encephalitis and herpes simplex virus (HSV)-1 encephalitis - two alternative causes of encephalitis - to increase the awareness of ICI-iE and improve its diagnosis and management. To that end, we retrospectively collected 30 cases of ICI-iE that were reported to the Side Effect Registry Immuno-Oncology (SERIO) and 46 cases of anti-LGI1 encephalitis or herpes simplex virus (HSV)-1 encephalitis that presented to a large German neurological referral center (Charité Universitätsmedizin Berlin) between January 2015 and September 2021. Signs and symptoms, imaging and electroencephalogram features, laboratory findings and outcome measures were assessed using standardized case report forms as well as patients' medical records and compared between the groups. The data reported here represents the largest primary cohort of patients with ICI-iE to date and the first comparison with other types of encephalitis. As all three disorders - ICI-iE, HSV-1 encephalitis and anti-LGI1 encephalitis - are rare neurological entities, this dataset can be used as a reference in future clinical studies on ICI-induced neurotoxicity, neurological autoimmune disorders, and central nervous system infections.
RESUMEN
Polycystin-2 (PC2), the gene product of one of two genes mutated in dominant polycystic kidney disease, is a member of the transient receptor potential cation channel family and can function as intracellular calcium (Ca(2+)) release channel. We performed a yeast two-hybrid screen by using the NH(2) terminus of PC2 and identified syntaxin-5 (Stx5) as a putative interacting partner. Coimmunoprecipitation studies in cell lines and kidney tissues confirmed interaction of PC2 with Stx5 in vivo. In vitro binding assays showed that the interaction between Stx5 and PC2 is direct and defined the respective interaction domains as the t-SNARE region of Stx5 and amino acids 5 to 72 of PC2. Single channel studies showed that interaction with Stx5 specifically reduces PC2 channel activity. Epithelial cells overexpressing mutant PC2 that does not bind Stx5 had increased baseline cytosolic Ca(2+) levels, decreased endoplasmic reticulum (ER) Ca(2+) stores, and reduced Ca(2+) release from ER stores in response to vasopressin stimulation. Cells lacking PC2 altogether had reduced cytosolic Ca(2+) levels. Our data suggest that PC2 in the ER plays a role in cellular Ca(2+) homeostasis and that Stx5 functions to inactivate PC2 and prevent leaking of Ca(2+) from ER stores. Modulation of the PC2/Stx5 interaction may be a useful target for impacting dysregulated intracellular Ca(2+) signaling associated with polycystic kidney disease.
Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Qa-SNARE/fisiología , Canales Catiónicos TRPP/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Células Epiteliales , Homeostasis , Ratones , Proteínas Mutantes , Unión ProteicaRESUMEN
Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and potentially irreversible adverse event of cytotoxic chemotherapy. We evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for chemotherapy induced neurotoxicity. Sensory neurons differentiated from two established induced pluripotent stem cell lines were used (s.c. BIHi005-A https://hpscreg.eu/cell-line/BIHi005-A and BIHi004-B https://hpscreg.eu/cell-line/BIHi004-B, Berlin Institute of Health Stem Cell Core Facility). Cell viability and cytotoxicity assays were performed, comparing susceptibility to four neurotoxic and two non-neurotoxic drugs. RNA sequencing analyses in paclitaxel vs. vehicle (DMSO)-treated sensory neurons were performed. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to a dose dependent decline of cell viability in clinically relevant IC50 ranges, which was not the case for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. RNA sequencing analyses at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways in response to 1 µM paclitaxel. Neuroprotective effects of lithium chloride co-incubation, which were previously shown in rodent dorsal root ganglia, could be replicated in human iPSC-DSN. Cell lines from the two different donors BIHi005-A and BIHi004-B showed different responses to the neurotoxic treatment in cell viability and cytotoxicity assays.
RESUMEN
Paclitaxel (Taxol) is a microtubule-stabilizing compound that is used for cancer chemotherapy. However, Taxol administration is limited by serious side effects including cardiac arrhythmia, which cannot be explained by its microtubule-stabilizing effect. Recently, neuronal calcium sensor 1 (NCS-1), a calcium binding protein that modulates the inositol-1,4,5-trisphosphate receptor (InsP(3)R), was described as a binding partner of Taxol and as a substrate of calpain. We examined calcium signaling processes in cardiomyocytes after treatment with Taxol to investigate the basis of Taxol-induced cardiac arrhythmia. After treating isolated neonatal rat ventricular myocytes with a therapeutic concentration of Taxol for several hours live cell imaging experiments showed that the frequency of spontaneous calcium oscillations significantly increased. This effect was not mimicked by other tubulin-stabilizing agents. However, it was prevented by inhibiting the InsP(3)R. Taxol treated cells had increased expression of NCS-1, an effect also detectable after Taxol administration in vivo. Short hairpin RNA mediated knockdown of NCS-1 decreased InsP(3)R dependent intracellular calcium release, whereas Taxol treatment, that increased NCS-1 levels, increased InsP(3)R dependent calcium release. The effects of Taxol were ryanodine receptor independent. At the single channel level Taxol and NCS-1 mediated an increase in InsP(3)R activity. Calpain activity was not affected by Taxol in cardiomyocytes suggesting a calpain independent signaling pathway. In short, our study shows that Taxol impacts calcium signaling and calcium oscillations in cardiomyocytes through NCS-1 and the InsP(3)R.