Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Alcohol Clin Exp Res ; 44(2): 320-339, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782169

RESUMEN

For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Ensayos Clínicos como Asunto/métodos , Pregnanolona/metabolismo , Pregnanolona/uso terapéutico , Alcoholismo/inmunología , Anestésicos/inmunología , Anestésicos/metabolismo , Anestésicos/uso terapéutico , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/inmunología , Hormona Liberadora de Corticotropina/metabolismo , Humanos , Pregnanolona/inmunología , Receptores de GABA-B/inmunología , Receptores de GABA-B/metabolismo , Resultado del Tratamiento
2.
Neurosci Biobehav Rev ; 158: 105558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244954

RESUMEN

This mini-review presents emerging evidence that endogenous neurosteroids modulate both pro- and anti-inflammatory signaling by immune cells and brain cells that contribute to depression, alcohol use disorders, and other inflammatory conditions. We first review the literature on pregnenolone and allopregnanolone inhibition of proinflammatory neuroimmune pathways in the periphery and the brain - effects that are independent of GABAergic mechanisms. We follow with evidence for neurosteroid enhancement of anti-inflammatory and protective pathways in brain and immune cells. These studies draw clinical relevance from a large body of evidence that pro-inflammatory immune signaling is dysregulated in many brain disorders and the fact that neurosteroids inhibit the same inflammatory pathways that are activated in depression, alcohol use disorders and other inflammatory conditions. Thus, we describe evidence that neurosteroid levels are decreased and neurosteroid supplementation has therapeutic efficacy in these neuropsychiatric conditions. We conclude with a perspective that endogenous regulation of immune balance between pro- and anti-inflammatory pathways by neurosteroid signaling is essential to prevent the onset of disease. Deficits in neurosteroids may unleash excessive pro-inflammatory activation which progresses in a feed-forward manner to disrupt brain networks that regulate stress, emotion and motivation. Neurosteroids can block various inflammatory pathways in mouse and human macrophages, rat brain and human blood and therefore provide new hope for treatment of intractable conditions that involve excessive inflammatory signaling.


Asunto(s)
Alcoholismo , Neuroesteroides , Ratas , Humanos , Ratones , Animales , Neuroesteroides/metabolismo , Alcoholismo/metabolismo , Encéfalo/metabolismo , Pregnanolona/farmacología , Pregnanolona/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
3.
Alcohol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033967

RESUMEN

Our laboratory has previously shown that chronic ethanol exposure elicits enhanced working memory performance in female, but not male, adult Sprague-Dawley rats, indicative of a fundamental sex difference in cortical plasticity. Recent studies have furthermore revealed that females display markedly reduced HCN-mediated channel activity in inhibitory Martinotti interneurons after chronic ethanol exposure that is similarly not observed in males. From these observations we hypothesized that alcohol elicits facilitated working memory performance via down-regulation of these channels' activity specifically within interneurons. To test this hypothesis, we employed a Pol-II compatible shRNA expression system to elicit targeted knockdown of HCN channel activity in these cells, and measured performance on a delayed Non-Match-to-Sample (NMS) T-maze test to gauge effects on working memory performance. A significant baseline enhancement of working memory performance with HCN channel knockdown was observed, indicative of a critical role for interneuron-expressed HCNs in maintaining optimal cortical network activity during cognitively-demanding tasks. Consistent with previous observations, ethanol exposure resulted in enhanced NMS T-maze performance, however elevated working memory performance was observed in both scram- and hcn-shRNA infected groups after alcohol administration. We therefore conclude that interneuron-expressed HCN channels, despite representing a minor population of total cortical HCN expression, contribute substantially to maintaining working memory processes. Downregulated HCN channel activity, though, does not alone appear sufficient to manifest alcohol-induced enhancement of working memory performance observed in female rats during acute withdrawal.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38991981

RESUMEN

BACKGROUND: Neuroimmune dysfunction in alcohol use disorder (AUD) is associated with activation of myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptors (TLR) resulting in overexpression of the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 overexpression in the brain is linked to anxiety, higher alcohol intake, neuronal death, and activation of microglia observed in AUD. The neurosteroid [3α,5α][3-hydroxypregnan-20-one (3α,5α-THP) has been reported as an inhibitor of MyD88-dependent TLR activation and MCP-1 overexpression in mouse and human macrophages and the brain of alcohol-preferring (P) rats. METHODS: We investigated how 3α,5α-THP regulates MCP-1 expression at the cellular level in P rat nucleus accumbens (NAc) and central amygdala (CeA). We focused on neurons, microglia, and astrocytes, examining the individual voxel density of MCP-1, neuronal marker NeuN, microglial marker IBA1, astrocytic marker GFAP, and their shared voxel density, defined as intersection. Ethanol-naïve male and female P rats were perfused 1 h after IP injections of 15 mg/kg of 3α,5α-THP, or vehicle. The NAc and CeA were imaged using confocal microscopy following double-immunofluorescence staining for MCP-1 with NeuN, IBA1, and GFAP, respectively. RESULTS: MCP-1 intersected with NeuN predominantly and IBA1/GFAP negligibly. 3α,5α-THP reduced MCP-1 expression in NeuN-labeled cells by 38.27 ± 28.09% in male and 56.11 ± 21.46% in female NAc, also 37.99 ± 19.53% in male and 54.96 ± 30.58% in female CeA. In females, 3α,5α-THP reduced the MCP-1 within IBA1 and GFAP-labeled voxels in the NAc and CeA. Conversely, in males, 3α,5α-THP did not significantly alter the MCP-1 within IBA1 in NAc or with GFAP in the CeA. Furthermore, 3α,5α-THP decreased levels of IBA1 in both regions and sexes with no impact on GFAP or NeuN levels. Secondary analysis performed on data normalized to % control values indicated that no significant sex differences were present. CONCLUSIONS: These data suggest that 3α,5α-THP inhibits neuronal MCP-1 expression and decreases the proliferation of microglia in P rats. These results increase our understanding of potential mechanisms for 3α,5α-THP modulation of ethanol consumption.

5.
Life (Basel) ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38792602

RESUMEN

Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.

6.
Psychopharmacology (Berl) ; 241(5): 1011-1025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282126

RESUMEN

RATIONALE: Multiple psychiatric disorders are associated with altered brain and serum levels of neuroactive steroids, including the endogenous GABAergic steroid, allopregnanolone. Clinically, chronic cocaine use was correlated with decreased levels of pregnenolone. Preclinically, the effect of acute cocaine on allopregnanolone levels in rodents has had mixed results, showing an increase or no change in allopregnanolone levels in some brain regions. OBJECTIVE: We hypothesized that cocaine acutely increases allopregnanolone levels, but repeated cocaine exposure decreases allopregnanolone levels compared to controls. METHODS: We performed two separate studies to determine how systemic administration of 15 mg/kg cocaine (1) acutely or (2) chronically alters brain (olfactory bulb, frontal cortex, dorsal striatum, and midbrain) and serum allopregnanolone levels in adult male and female Sprague-Dawley rats. RESULTS: Cocaine acutely increased allopregnanolone levels in the midbrain, but not in olfactory bulb, frontal cortex, or dorsal striatum. Repeated cocaine did not persistently (24 h later) alter allopregnanolone levels in any region in either sex. However, allopregnanolone levels varied by sex across brain regions. In the acute study, we found that females had significantly higher allopregnanolone levels in serum and olfactory bulb relative to males. In the repeated cocaine study, females had significantly higher allopregnanolone levels in olfactory bulb, frontal cortex, and serum. Finally, acute cocaine increased allopregnanolone levels in the frontal cortex of females in proestrus, relative to non-proestrus stages. CONCLUSION: Collectively these results suggest that allopregnanolone levels vary across brain regions and by sex, which may play a part in differential responses to cocaine by sex.


Asunto(s)
Cocaína , Pregnanolona , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Encéfalo , Mesencéfalo , Cocaína/farmacología
7.
Alcohol Clin Exp Res (Hoboken) ; 47(3): 459-469, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587947

RESUMEN

BACKGROUND: Alcohol affects multiple circuits in the brain, mainly disrupting the delicate balance between inhibitory γ-aminobutyric acid (GABA) transmission and excitatory glutamate signaling in brain areas involved in reward circuits. These include the amygdala, nucleus accumbens (Acb), and ventral tegmental area (VTA). This action impairs circuits that regulate behavioral control of craving and alcohol seeking and intake. Studies in both rodent models and postmortem human brain of patients with alcohol use disorder (AUD) have highlighted the association between the loss of GABAergic inhibition and the development of addiction. The neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) is a potent positive modulator of GABAA receptors. Chronic alcohol consumption reduces 3α,5α-THP levels, resulting in decreased GABA inhibition. We previously demonstrated that enhancing neurosteroid biosynthesis by overexpression of the cholesterol side-chain cleavage enzyme P450scc decreased alcohol intake in male alcohol-preferring rats (P-rats). While most of the evidence of alcohol-induced alterations comes from studies in male subjects, some data show that females are more vulnerable to alcohol's effects than males. METHODS: In this study, we investigated the ability of 3α,5α-THP direct infusions in two brain regions that contribute to alcohol reinforcement, the VTA and Acb core (AcbC), to regulate alcohol self-administration in female P-rats. RESULTS: Administration of 3α,5α-THP into the AcbC increased 3α,5α-THP-positive cell expression in this area and reduced alcohol self-administration. By contrast, 3α,5α-THP infusion into the VTA did not significantly affect alcohol self-administration, though trends for a reduction were found. CONCLUSIONS: Our results show that local increases in 3α,5α-THP in the AcbC may alter mesolimbic activity that drives a reduction in alcohol self-administration.


Asunto(s)
Neuroesteroides , Núcleo Accumbens , Humanos , Ratas , Masculino , Femenino , Animales , Núcleo Accumbens/metabolismo , Neuroesteroides/metabolismo , Neuroesteroides/farmacología , Etanol , Encéfalo , Pregnanolona/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
Biomolecules ; 13(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37627270

RESUMEN

The neurosteroid 3α,5α-THP is a potent GABAA receptor-positive modulator and its regulatory action on the HPA axis stress response has been reported in numerous preclinical and clinical studies. We previously demonstrated that 3α,5α-THP down-regulation of HPA axis activity during stress is sex-, brain region- and stressor-dependent. In this study, we observed a deleterious submersion behavior in response to 3α,5α-THP (15 mg/kg) during forced swim stress (FSS) that led us to investigate how 3α,5α-THP might affect behavioral coping strategies engaged in by the animal. Given the well-established involvement of the opioid system in HPA axis activation and its interaction with GABAergic neurosteroids, we explored the synergic effects of 3α,5α-THP/opiate system activation in this behavior. Serum ß-endorphin (ß-EP) was elevated by FSS and enhanced by 3α,5α-THP + FSS. Hypothalamic Mu-opiate receptors (MOP) were increased in female rats by 3α,5α-THP + FSS. Pretreatment with the MOP antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 2 mg/kg, IP) reversed submersion behavior in males. Moreover, in both males and females, CTAP pretreatment decreased immobility episodes while increasing immobility duration but did not alter swimming duration. This interaction between 3α,5α-THP and the opioid system in the context of FSS might be important in the development of treatment for neuropsychiatric disorders involving HPA axis activation.


Asunto(s)
Analgésicos Opioides , Neuroesteroides , Femenino , Masculino , Animales , Ratas , Pregnanolona/farmacología , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Natación , Receptores de GABA-A
9.
EBioMedicine ; 89: 104473, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801618

RESUMEN

BACKGROUND: Brexanolone has rapid, long-lasting, and remarkable efficacy in the treatment of post-partum depression (PPD). We test the hypothesis that brexanolone inhibits proinflammatory modulators and macrophage activation in PPD patients, which may promote clinical recovery. METHODS: PPD patients (N = 18) provided blood samples before and after brexanolone infusion according to the FDA-approved protocol. Patients were unresponsive to prior treatment before brexanolone therapy. Serum was collected to determine neurosteroid levels and whole blood cell lysates were examined for inflammatory markers and in vitro responses to the inflammatory activators lipopolysaccharide (LPS) and imiquimod (IMQ). FINDINGS: Brexanolone infusion altered multiple neuroactive steroid levels (N = 15-18), reduced levels of inflammatory mediators (N = 11) and inhibited their response to inflammatory immune activators (N = 9-11). Specifically, brexanolone infusion reduced whole blood cell tumor necrosis factor-α (TNF-α, p = 0.003), and interleukin-6 (IL-6, p = 0.04) and these effects were correlated with HAM-D score improvement (TNF-α, p = 0.049; IL-6, p = 0.02). Furthermore, brexanolone infusion prevented LPS and IMQ-induced elevation of TNF-α (LPS: p = 0.02; IMQ: p = 0.01), IL-1ß (LPS: p = 0.006; IMQ: p = 0.02) and IL-6 (LPS: p = 0.009; IMQ: p = 0.01), indicating inhibition of toll-like receptor (TLR)4 and TLR7 responses. Finally, inhibition of TNF-α, IL-1ß and IL-6 responses to both LPS and IMQ were correlated with HAM-D score improvements (p < 0.05). INTERPRETATION: Brexanolone actions involve inhibition of inflammatory mediator production and inhibition of inflammatory responses to TLR4 and TLR7 activators. The data suggest that inflammation plays a role in post-partum depression and that inhibition of inflammatory pathways contributes to the therapeutic efficacy of brexanolone. FUNDING: The Foundation of Hope, Raleigh, NC and UNC School of Medicine, Chapel Hill.


Asunto(s)
Depresión Posparto , Factor de Necrosis Tumoral alfa , Femenino , Humanos , Receptor Toll-Like 7 , Interleucina-6 , Lipopolisacáridos/uso terapéutico , Imiquimod
10.
Biomolecules ; 12(8)2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36009028

RESUMEN

Corticotropin-releasing factor (CRF) regulates the stress response in the hypothalamus and modulates neurotransmission across the brain through CRF receptors. Acute stress increases hypothalamic CRF and the GABAergic neurosteroid (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP). We previously showed that 3α,5α-THP regulation of CRF is sex and brain region dependent. In this study, we investigated 3α,5α-THP regulation of stress-induced hypothalamic CRF, CRF receptor type 1 (CRFR1), CRF binding protein (CRFBP), pro-opiomelanocortin (POMC), and glucocorticoid receptor (GR) by western blot and circulating corticosterone (CORT) by enzyme-linked immunosorbent assay (ELISA) in male and female Sprague Dawley rats. Tissue was collected after rats were injected with 3α,5α-THP (15 mg/kg, IP) or vehicle 15 min prior to 30 min of restraint stress (RS), or 10 min of forced swim stress (FSS) and 20 min recovery. The initial exposure to a stress stimulus increased circulating CORT levels in both males and females, but 3α,5α-THP attenuated the CORT response only in females after RS. 3α,5α-THP reduced GR levels in male and females, but differently between stressors. 3α,5α-THP decreased the CRF stress response after FSS in males and females, but after RS, only in female rats. 3α,5α-THP reduced the CRFR1, CRFBP, and POMC increases after RS and FSS in males, but in females only after FSS. Our results showed different stress responses following different types of stressors: 3α,5α-THP regulated the HPA axis at different levels, depending on sex.


Asunto(s)
Hormona Liberadora de Corticotropina , Pregnanolona , Animales , Corticosterona , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Sistema Hipófiso-Suprarrenal , Proopiomelanocortina/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Transl Psychiatry ; 11(1): 145, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637705

RESUMEN

We have shown that endogenous neurosteroids, including pregnenolone and 3α,5α-THP inhibit toll-like receptor 4 (TLR4) signal activation in mouse macrophages and the brain of alcohol-preferring (P) rat, which exhibits innate TLR4 signal activation. The current studies were designed to examine whether other activated TLR signals are similarly inhibited by 3α,5α-THP. We report that 3α,5α-THP inhibits selective agonist-mediated activation of TLR2 and TLR7, but not TLR3 signaling in the RAW246.7 macrophage cell line. The TLR4 and TLR7 signals are innately activated in the amygdala and NAc from P rat brains and inhibited by 3α,5α-THP. The TLR2 and TLR3 signals are not activated in P rat brain and they are not affected by 3α,5α-THP. Co-immunoprecipitation studies indicate that 3α,5α-THP inhibits the binding of MyD88 with TLR4 or TLR7 in P rat brain, but the levels of TLR4 co-precipitating with TRIF are not altered by 3α,5α-THP treatment. Collectively, the data indicate that 3α,5α-THP inhibits MyD88- but not TRIF-dependent TLR signal activation and the production of pro-inflammatory mediators through its ability to block TLR-MyD88 binding. These results have applicability to many conditions involving pro-inflammatory TLR activation of cytokines, chemokines, and interferons and support the use of 3α,5α-THP as a therapeutic for inflammatory disease.


Asunto(s)
Neuroesteroides , Pregnanolona , Animales , Etanol , Ratones , Factor 88 de Diferenciación Mieloide , Pregnenolona , Ratas
12.
Neuropsychopharmacology ; 46(11): 1927-1936, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34035471

RESUMEN

Long-term alcohol use results in behavioral deficits including impaired working memory, elevated anxiety, and blunted inhibitory control that is associated with prefrontal cortical (PFC) dysfunction. Preclinical observations demonstrate multiple impairments in GABAergic neurotransmission onto deep-layer principal cells (PCs) in the prelimbic cortex that suggest dependence-related cortical dysfunction is the product of elevated excitability in these cells. Despite accumulating evidence showing alcohol-induced changes in interneuron signaling onto PCs differ between sexes, there is limited data explicitly evaluating sex-specific ethanol effects on excitatory signaling onto deep-layer PCs that may further contribute to deficits in PFC-dependent behaviors. To address this, we conducted electrophysiological and behavioral tests in both male and female Sprague-Dawley rats to evaluate the effects of chronic ethanol exposure. Among our observations, we report a marked enhancement in glutamatergic signaling onto deep-layer PCs in male, but not female, rats after alcohol exposure. This phenomenon was furthermore specific to a sub-class of PC, sub-cortically projecting Type-A cells, and coincided with enhanced anxiety-like behavior, but no observable deficit in working memory. In contrast, female rats displayed alcohol-induced facilitation in working memory performance with no change in expression of anxiety-like behavior. Together, these results suggest fundamental differences in alcohol effects on cell activity, cortical sub-circuits, and PFC-dependent behaviors across male and female rats.


Asunto(s)
Corteza Prefrontal , Células Piramidales , Animales , Etanol/toxicidad , Femenino , Interneuronas , Masculino , Ratas , Ratas Sprague-Dawley
13.
Neuropharmacology ; 186: 108463, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460689

RESUMEN

CRF is the main activator of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. CRF neurons are found mainly in the hypothalamus, but CRF positive cells and CRF1 receptors are also found in extrahypothalamic structures, including amygdala (CeA), hippocampus, NAc and VTA. CRF release in the hypothalamus is regulated by inhibitory GABAergic interneurons and extrahypothalamic glutamatergic inputs, and disruption of this balance is found in stress-related disorders and addiction. (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP), the most potent positive modulator of GABAA receptors, attenuates the stress response reducing hypothalamic CRF mRNA expression and ACTH and corticosterone serum levels. In this study, we explored 3α,5α-THP regulation of hypothalamic and extrahypothalamic CRF mRNA and peptide expression, in male and female Sprague Dawley rats, following vehicle or 3α,5α-THP administration (15 mg/kg). In the hypothalamus, we found sex differences in CRF mRNA expression (females +74%, p < 0.01) and CRF peptide levels (females -71%, p < 0.001). 3α,5α-THP administration reduced hypothalamic CRF mRNA expression only in males (-50%, p < 0.05) and did not alter CRF peptide expression in either sex. In hippocampus and CeA, 3α,5α-THP administration reduced CRF peptide concentrations only in the male (hippocampus -29%, p < 0.05; CeA -62%, p < 0.01). In contrast, 3α,5α-THP injection increased CRF peptide concentration in the VTA of both males (+32%, p < 0.01) and females (+26%, p < 0.01). The results show sex and region-specific regulation of CRF signals and the response to 3α,5α-THP administration. This data may be key to successful development of therapeutic approaches for stress-related disorders and addiction.


Asunto(s)
Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Hormona Liberadora de Corticotropina/biosíntesis , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Pregnanolona/administración & dosificación , Caracteres Sexuales , Animales , Femenino , Inyecciones Intraperitoneales , Masculino , Pregnanolona/análogos & derivados , Ratas , Ratas Sprague-Dawley
14.
Neurobiol Stress ; 12: 100203, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31879693

RESUMEN

For several years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone) may have therapeutic potential for treatment of various stress-related diseases including post-traumatic stress disorder (PTSD), depression, alcohol use disorders (AUDs), as well as neurological and psychiatric conditions that are worsened in the presence of stress, such as multiple sclerosis, schizophrenia, and seizure disorders. In this review, we make the argument that the pleiotropic actions of allopregnanolone account for its ability to promote recovery in such a wide variety of illnesses. Likewise, the allopregnanolone precursors, pregnenolone and progesterone, share many actions of allopregnanolone. Of course, pregnenolone and progesterone lack direct effects on GABAA receptors, but these compounds are converted to allopregnanolone in vivo. This review presents a theoretical framework for understanding how endogenous neurosteroids that regulate 1) γ-aminobutyric acid (GABA)A receptors, 2) corticotropin releasing factor (CRF) and 3) pro-inflammatory signaling in the innate immune system and brain could play a key role in both the prevention and treatment of stress-related disease. We further discuss cautions and limitations of allopregnanolone or precursor therapy as well as the need for more clinical studies.

15.
Neuropharmacology ; 157: 107686, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247268

RESUMEN

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.


Asunto(s)
Trastorno del Espectro Autista/etiología , Exposición Materna/efectos adversos , Exposición Paterna/efectos adversos , Aislamiento Social/psicología , Estrés Psicológico/psicología , Animales , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Isoniazida/efectos adversos , Masculino , Oxitocina/sangre , Fenotipo , Corteza Prefrontal/metabolismo , Embarazo , Ratas , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Conducta Social , Testosterona/sangre
16.
Physiol Behav ; 184: 172-178, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29179996

RESUMEN

Variations in maternal care in the rat influence the development of individual differences in behavioral and endocrine responses to stress. This study aimed to examine the interaction between intragastric intubation during late gestation and postpartum stress, induced by pup separation, on maternal behavior and on dams' emotional state and HPA axis function. Rats received intragastric intubation of water on days 12-20 of gestation or remained untreated in their home cage (naïve dams). Pup separation was used as a model of postpartum stress. The procedure consisted of a daily separation of the dam from its litter for 3h from PND 3 until PND 15. Pup separation was carried out in both naïve and intubated dams. The behavioral results indicate that the association of these two stressors significantly decreased arched-back nursing (ABN) and licking and grooming (LG), behaviors considered important parameters to discriminate the high quality of maternal care. Moreover, dams that received both stressors displayed less nest building and blanket nursing behaviors; no effect on the frequency of passive and total nursing was recorded. The analysis of single effects on ABN and LG, revealed that dams that underwent gestational stress induced by intragastric intubation displayed less LG, but ABN was overall unchanged. On the contrary, pup separation stress significantly increased ABN and LG upon reunion of naïve dams with their pups. Treatments per se or the association of both induced modest changes in plasma levels of allopregnanolone and corticosterone that likely did not influence maternal care. These data show that the association of a mild stress during gestation with an unfavorable experience after parturition had a significant impact on maternal care. This effect seems independent from HPA axis activation or from changes in emotional state; further studies would be necessary to ascertain the neural changes that could contribute to altered maternal behavior in stressed mothers. Moreover, these results suggest that the use of intragastric intubation during gestation would interfere with measures of drug-induced changes in maternal behavior and likely their consequences on the offspring.


Asunto(s)
Conducta Materna/fisiología , Privación Materna , Periodo Posparto/psicología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Estrés Psicológico/fisiopatología , Factores de Edad , Animales , Animales Recién Nacidos , Corticosterona/sangre , Femenino , Aseo Animal , Postura , Embarazo , Pregnanolona/sangre , Ratas , Ratas Sprague-Dawley
17.
Neuropharmacology ; 133: 242-253, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407214

RESUMEN

We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders.


Asunto(s)
Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Aislamiento Social , Hormona Adrenocorticotrópica/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Corticosterona/metabolismo , Electrochoque/efectos adversos , Endocannabinoides/metabolismo , Pie/inervación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Antagonistas de Hormonas/administración & dosificación , Masculino , Mifepristona/administración & dosificación , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/metabolismo , Estrés Psicológico/patología , Factores de Tiempo
19.
Psychopharmacology (Berl) ; 234(17): 2587-2596, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28623385

RESUMEN

RATIONALE: Social isolation of rats immediately after weaning is thought to represent an animal model of anxiety-like disorders. Socially isolated virgin females showed a significant decrease in allopregnanolone levels, associated with increased anxiety-related behavior compared with group-housed rats. OBJECTIVES: The present study investigates whether post-weaning social isolation affects maternal behavior and assesses neuroactive steroid levels in adult female rats during pregnancy and postpartum. RESULTS: Socially isolated dams displayed a reduction in the frequency of arched back nursing (ABN) behavior compared to group-housed dams. In addition, both total and active nursing were lower in socially isolated dams compared to group-housed dams. Compared to virgin females, pregnancy increases allopregnanolone levels in group-housed as well as isolated dams and such increase was greater in the latter group. Compared to pregnancy levels, allopregnanolone levels decreased after delivery and this decrease was more pronounced in isolated than group-housed dams. Moreover, the fluctuations in plasma corticosterone levels that occur in late pregnancy and during lactation follow a different pattern in socially isolated vs. group-housed rats. CONCLUSIONS: The present results show that social isolation in female rats decreases maternal behavior; this effect is associated with lower allopregnanolone concentrations at postpartum, which may account, at least in part, for the poor maternal care observed in socially isolated dams. In support of this conclusion is the finding that finasteride-treated dams, which display a decrease in plasma allopregnanolone levels, also showed a marked reduction in maternal care, suggesting that allopregnanolone may contribute to the quality of maternal care.


Asunto(s)
Ansiedad/sangre , Conducta Materna/fisiología , Pregnanolona/sangre , Aislamiento Social , Animales , Corticosterona/sangre , Modelos Animales de Enfermedad , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA