Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(15): 7471-7479, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30032309

RESUMEN

Cockayne syndrome protein B (CSB) is a member of the SNF2/SWI2 ATPase family and is essential for transcription-coupled nucleotide excision DNA repair (TC-NER). CSB also plays critical roles in transcription regulation. CSB can hydrolyze ATP in a DNA-dependent manner, alter protein-DNA contacts and anneal DNA strands. How the different biochemical activities of CSB are utilized in these cellular processes have only begun to become clear in recent years. Mutations in the gene encoding CSB account for majority of the Cockayne syndrome cases, which result in extreme sun sensitivity, premature aging features and/or abnormalities in neurology and development. Here, we summarize and integrate recent biochemical, structural, single-molecule and somatic cell genetic studies that have advanced our understanding of CSB. First, we review studies on the mechanisms that regulate the different biochemical activities of CSB. Next, we summarize how CSB is targeted to regulate transcription under different growth conditions. We then discuss recent advances in our understanding of how CSB regulates transcription mechanistically. Lastly, we summarize the various roles that CSB plays in the different steps of TC-NER, integrating the results of different studies and proposing a model as to how CSB facilitates TC-NER.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Regulación de la Expresión Génica/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Adenosina Trifosfato/metabolismo , ADN/genética , Humanos , Mutación/genética , Schizosaccharomyces/genética , Transcripción Genética/genética
2.
J Biol Chem ; 293(46): 17863-17874, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30266807

RESUMEN

Cockayne syndrome protein B (CSB) is an ATP-dependent chromatin remodeler that relieves oxidative stress by regulating DNA repair and transcription. CSB is proposed to participate in base-excision repair (BER), the primary pathway for repairing oxidative DNA damage, but exactly how CSB participates in this process is unknown. It is also unclear whether CSB contributes to other repair pathways during oxidative stress. Here, using a patient-derived CS1AN-sv cell line, we examined how CSB is targeted to chromatin in response to menadione-induced oxidative stress, both globally and locus-specifically. We found that menadione-induced, global CSB-chromatin association does not require CSB's ATPase activity and is, therefore, mechanistically distinct from UV-induced CSB-chromatin association. Importantly, poly(ADP-ribose) polymerase 1 (PARP1) enhanced the kinetics of global menadione-induced CSB-chromatin association. We found that the major BER enzymes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), do not influence this association. Additionally, the level of γ-H2A histone family member X (γ-H2AX), a marker for dsDNA breaks, was not increased in menadione-treated cells. Therefore, our results support a model whereby PARP1 localizes to ssDNA breaks and recruits CSB to participate in DNA repair. Furthermore, this global CSB-chromatin association occurred independently of RNA polymerase II-mediated transcription elongation. However, unlike global CSB-chromatin association, both PARP1 knockdown and inhibition of transcription elongation interfered with menadione-induced CSB recruitment to specific genomic regions. This observation supports the hypothesis that CSB is also targeted to specific genomic loci to participate in transcriptional regulation in response to oxidative stress.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN/metabolismo , Estrés Oxidativo/fisiología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Factor de Unión a CCCTC/metabolismo , ADN/efectos de la radiación , Daño del ADN , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Sitios Genéticos , Humanos , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Unión Proteica , Rayos Ultravioleta , Vitamina K 3/farmacología
3.
Nucleic Acids Res ; 44(5): 2125-35, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26578602

RESUMEN

Cockayne syndrome is a premature aging disease associated with numerous developmental and neurological abnormalities, and elevated levels of reactive oxygen species have been found in cells derived from Cockayne syndrome patients. The majority of Cockayne syndrome cases contain mutations in the ATP-dependent chromatin remodeler CSB; however, how CSB protects cells from oxidative stress remains largely unclear. Here, we demonstrate that oxidative stress alters the genomic occupancy of the CSB protein and increases CSB occupancy at promoters. Additionally, we found that the long-range chromatin-structure regulator CTCF plays a pivotal role in regulating sites of genomic CSB occupancy upon oxidative stress. We show that CSB directly interacts with CTCF in vitro and that oxidative stress enhances the CSB-CTCF interaction in cells. Reciprocally, we demonstrate that CSB facilitates CTCF-DNA interactions in vitro and regulates CTCF-chromatin interactions in oxidatively stressed cells. Together, our results indicate that CSB and CTCF can regulate each other's chromatin association, thereby modulating chromatin structure and coordinating gene expression in response to oxidative stress.


Asunto(s)
Cromatina/química , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , ADN/genética , Fibroblastos/metabolismo , Proteínas Represoras/genética , Secuencia de Bases , Sitios de Unión , Factor de Unión a CCCTC , Línea Celular Transformada , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/efectos de los fármacos , ADN/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Estrés Oxidativo , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Transducción de Señal , Vitamina K 3/farmacología
4.
PLoS Genet ; 10(4): e1004284, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743307

RESUMEN

Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.


Asunto(s)
Cromatina/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Línea Celular , Cromatina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA