Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Biotechnol ; 24(1): 32, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750469

RESUMEN

ß-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous ß-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter ß-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm ß-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.Our results indicate the possibility of a new and so far neglected constituent in ß-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and ß-TCP.


Asunto(s)
Fosfatos de Calcio , Cerámica , Monocitos , Monocitos/citología , Cerámica/química , Fosfatos de Calcio/química , Humanos , Sustitutos de Huesos/química , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Porosidad
2.
BMC Res Notes ; 17(1): 122, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685087

RESUMEN

Fluorescence analysis of ß-TCP ceramics is often used to describe cells found on said ceramics. However, we found, to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a consequence, scientists working with these dowels and likely even other types should try to avoid creating false positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence and by reducing them by using Technovit fixation when possible.


Asunto(s)
Artefactos , Fosfatos de Calcio , Microscopía Fluorescente , Microscopía Fluorescente/métodos , Fosfatos de Calcio/química , Humanos , Cerámica/química
3.
Bone Rep ; 20: 101739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38304619

RESUMEN

Bisphosphonates (BP) are anti-resorptive drugs that are widely used to prevent bone loss in osteoporosis. Since inhibition of bone resorption will cause a decrease in bone formation through a process called coupling, it is hypothesized that extended treatment protocols may impair bone healing. In this study, ß-tri­calcium-phosphate (ßTCP) ceramics were inserted into critical-size long bone defects in estrogen-deficient mice under BP therapy. The study assessed the benefits of coating the ceramics with Bone Morphogenetic Protein-2 (BMP2) and an engineered BMP2 analogue (L51P) that inactivates BMP antagonists on the healing process, implant resorption, and bone formation. Female NMRI mice (11-12 weeks of age) were ovariectomized (OVX) or sham operated. Eight weeks later, after the manifestation of ovariectomy-induced osteoporotic bone changes, BP therapy with Alendronate (ALN) was commenced. After another five weeks, a femoral critical-size defect was generated, rigidly fixed, and ßTCP-cylinders loaded with 0.25 µg or 2.5 µg BMP2, 2.5 µg L51P, and 0.25 µg BMP2/2.5 µg L51P, respectively, were inserted. Unloaded ßTCP-cylinders were used as controls. Femora were collected six and twelve weeks post-implantation. Histological and micro-computer tomography (MicroCT) evaluation revealed that insertion of cylinders coated with 2.5 µg BMP2 accelerated fracture repair and induced significant bone formation compared to controls (unloaded cylinders or coated with 2.5 µg L51P, 0.25 µg BMP2) already six weeks post-implantation, independent of estrogen-deficiency and BP therapy. The simultaneous administration of BMP2 and L51P (0.25 µg BMP2/2.5 µg L51P) did not promote fracture healing six and twelve weeks post-implantation. Moreover, new bone formation within the critical-size defect was directly linked to the removal of the ßTCP-implant in all experimental groups. No evidence was found that long-term therapy with ALN impaired the resorption of the implanted graft. However, osteoclast transcriptome signature was elevated in sham and OVX animals upon treatment with BP, with transcript levels being higher at six weeks than at twelve weeks post-surgery. Furthermore, the transcriptome profile of the developing repair tissue confirmed an accelerated repair process in animals treated with 2.5 µg BMP2 implants. L51P did not increase the bioefficacy of BMP2 in the applied defect model. The present study provides evidence that continuous administration of BP does not inhibit implant resorption and does not alter the kinetics of the healing process of critical-size long bone defects. Furthermore, the BMP2 variant L51P did not enhance the bioefficacy of BMP2 when applied simultaneously to the femoral critical-size defect in sham and OVX mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA