RESUMEN
Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.
Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias Neuroepiteliales , Humanos , Adulto Joven , Biomarcadores de Tumor/genética , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Fusión Génica , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Proteínas Tirosina Quinasas Receptoras/genética , Proteína Nuclear Ligada al Cromosoma X/genéticaRESUMEN
Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/genética , Glioblastoma/patología , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/patología , Fosfohidrolasa PTEN/genética , Proteínas de Unión a Retinoblastoma/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 7/genética , Estudios de Cohortes , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Variaciones en el Número de Copia de ADN , Femenino , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.
Asunto(s)
Proteínas de Ciclo Celular/genética , Ependimoma/genética , Neoplasias Supratentoriales/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Niño , Femenino , Humanos , Masculino , Fusión de OncogenesRESUMEN
Rosette-forming glioneuronal tumor (RGNT) is a rare brain neoplasm that primarily affects young adults. Although alterations affecting the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathway have been associated with this low-grade entity, comprehensive molecular investigations of RGNT in larger series have not been performed to date, and an integrated view of their genetic and epigenetic profiles is still lacking. Here we describe a genome-wide DNA methylation and targeted sequencing-based characterization of a molecularly distinct class of tumors (n = 30), initially identified through genome-wide DNA methylation screening among a cohort of > 30,000 tumors, of which most were diagnosed histologically as RGNT. FGFR1 hotspot mutations were observed in all tumors analyzed, with co-occurrence of PIK3CA mutations in about two-thirds of the cases (63%). Additional loss-of-function mutations in the tumor suppressor gene NF1 were detected in a subset of cases (33%). Notably, in contrast to most other low-grade gliomas, these tumors often displayed co-occurrence of two or even all three of these mutations. Our data highlight that molecularly defined RGNTs are characterized by highly recurrent combined genetic alterations affecting both MAPK and PI3K signaling pathways. Thus, these two pathways appear to synergistically interact in the formation of RGNT, and offer potential therapeutic targets for this disease.
Asunto(s)
Neoplasias Encefálicas/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Glioma/genética , Neurofibromina 1/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Adolescente , Adulto , Anciano , Niño , Metilación de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neuronas/patología , Estudios Retrospectivos , Adulto JovenAsunto(s)
Astrocitoma , Neoplasias Encefálicas , Sistema de Señalización de MAP Quinasas , Humanos , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Sistema de Señalización de MAP Quinasas/fisiología , Sistema de Señalización de MAP Quinasas/genética , Adulto , Masculino , Femenino , Persona de Mediana Edad , Mutación/genéticaRESUMEN
Gliomas are among the most lethal cancers, being highly resistant to both chemo- and radiotherapy. The expression of junctional adhesion molecule-A (JAM-A) was recently identified on the surface of stem cell-like brain tumor-initiating cells and suggested to function as a unique glioblastoma niche adhesion factor influencing the tumorigenic potential of brain tumor-initiating cells. We have recently identified high JAM-A expression to be associated with poor outcome in glioblastomas, and our aim was to further investigate the expression of JAM-A in gliomas focusing especially on the prognostic value in WHO grade II and III gliomas. JAM-A protein expression was evaluated by immunohistochemistry and advanced quantitative image analysis with continuous estimates of staining intensity. The JAM-A antibody stained tumor cell membranes and cytoplasm to various extent in different glioma subtypes, and the intensity was higher in glioblastomas than low-grade gliomas. We could not detect an association with overall survival in patients with grade II and III tumors. Double-immunofluorescence stainings in glioblastomas revealed co-expression of JAM-A with CD133, SOX2, nestin, and GFAP in tumor cells as well as some co-expression with the microglial/macrophage marker IBA-1. In conclusion, JAM-A expression was higher in glioblastomas compared to low-grade gliomas and co-localized with recognized stem cell markers suggesting an association of JAM-A with glioma aggressiveness. No significant association between JAM-A expression and overall survival was found in grade II and III gliomas. Further research is needed to determine the function and clinical impact of JAM-A in gliomas.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Glioma/metabolismo , Receptores de Superficie Celular/metabolismo , Antígeno AC133/metabolismo , Adulto , Biomarcadores de Tumor/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas de Unión al Calcio , Estudios de Cohortes , Proteínas de Unión al ADN/metabolismo , Femenino , Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioma/genética , Glioma/patología , Humanos , Masculino , Proteínas de Microfilamentos , Persona de Mediana Edad , Clasificación del Tumor , Nestina , Pronóstico , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/metabolismo , Análisis de SupervivenciaRESUMEN
Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor. A major reason for the overall median survival being only 14.6 months is migrating tumor cells left behind after surgery. Another major reason is tumor cells having a so-called cancer stem cell phenotype being therefore resistant towards traditional chemo- and radiotherapy. A group of novel molecular targets are microRNAs (miRNAs). MiRNAs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. The aim of this study was to identify differentially expressed miRNAs in migrating GBM cells using serum-free stem cell conditions. We used patient-derived GBM spheroid cultures for a novel serum-free migration assay. MiRNA expression of migrating tumor cells isolated at maximum migration speed was compared with corresponding spheroids using an OpenArray Real-Time PCR System. The miRNA profiling revealed 30 miRNAs to be differentially expressed. In total 13 miRNAs were upregulated and 17 downregulated in migrating cells compared to corresponding spheroids. The three most deregulated miRNAs, miR-1227 (up-regulated), miR-32 (down-regulated) and miR-222 (down-regulated), were experimentally overexpressed. A non-significantly increased migration rate was observed after miR-1227 overexpression. A significantly reduced migration rate was observed after miR-32 and miR-222 overexpression. In conclusion a shift in microRNA profile upon glioma cell migration was identified using an assay avoiding serum-induced migration. Both the miRNA profiling and the functional validation suggested that miR-1227 may be associated with increased migration and miR-32 and miR-222 with decreased migration. These miRNAs may represent potential novel targets in migrating glioma cells.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Movimiento Celular , Glioblastoma/metabolismo , MicroARNs/metabolismo , Medio de Cultivo Libre de Suero , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Esferoides Celulares , Células Tumorales CultivadasRESUMEN
The brain-blood interface holds the key to our understanding of how cerebral blood flow is regulated and how water and solutes are exchanged between blood and brain. The highly specialized astrocytic membranes that enwrap brain microvessels are salient constituents of the brain-blood interface. These endfoot membranes contain a distinct set of molecules that is anchored to the subendothelial basal lamina forming an endfoot-basal lamina junctional complex. Here we explore the mechanisms underpinning the formation of this complex. By use of a tailor made model system we show that endothelial cells promote AQP4 accumulation by exerting an inductive effect through extracellular matrix components such as agrin, as well as through a direct mechanical interaction with the endfoot processes. Through the compounds they secrete, the endothelial cells also increase AQP4 expression. The present data suggest that the highly specialized gliovascular interface is established through inductive processes that include both chemical and mechanical factors. GLIA 2015;63:2073-2091.
RESUMEN
BACKGROUND: Pregnancy-associated plasma protein-A (PAPP-A) is a local regulator of insulin-like growth factor (IGF) bioavailability in physiological systems, but many structural and functional aspects of the metzincin metalloproteinase remain to be elucidated. PAPP-A cleaves IGF binding protein (IGFBP)-4 and IGFBP-5. Cleavage of IGFBP-4, but not IGFBP-5, depends on the binding of IGF before proteolysis by PAPP-A can occur. The paralogue PAPP-A2 has two substrates among the six IGFBPs: IGFBP-3 and IGFBP-5. METHODS: Sets of chimeric proteins between IGFBP-4 and -5, and IGFBP-3 and -5 were constructed to investigate the structural requirements for IGF modulation. At the proteinase level, we investigated the importance of individual acidic amino acids positioned in the proteolytic domain of PAPP-A for proteolytic activity against IGFBP-4 and -5. Interaction between PAPP-A and its substrates was analyzed by surface plasmon resonance. RESULTS AND CONCLUSION: We provide data suggesting that the C-terminal domain of the IGFBPs is responsible for IGF-dependent modulation of access to the scissile bond. Loss or reduction of IGFBP proteolysis by PAPP-A was observed upon mutation of residues positioned in the unique 63-residue stretch separating the zinc and Met-turn motifs, and in the short sequence following the Met-turn methionine. A model of the proteolytic domain of PAPP-A suggests the presence of structural calcium ions in the C-terminal subdomain, implicated in IGFBP substrate interactions. GENERAL SIGNIFICANCE: Detailed knowledge of interactions between PAPP-A and its substrates is required to understand the modulatory role of PAPP-A on IGF receptor stimulation.
Asunto(s)
Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteína Plasmática A Asociada al Embarazo/química , Somatomedinas/química , Secuencia de Aminoácidos , Sitios de Unión , Femenino , Células HEK293 , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Embarazo , Proteína Plasmática A Asociada al Embarazo/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Somatomedinas/genética , Especificidad por Sustrato , TransfecciónRESUMEN
Background: There are no generally accepted criteria for selecting patients with recurrent glioblastoma for surgery. This retrospective study in a Danish population-based cohort aimed to identify prognostic factors affecting postoperative survival after repeated surgery for recurrent glioblastoma and to test if the preoperative New Scale for Recurrent Glioblastoma Surgery (NSGS) developed by Park CK et al could assist in the selection of patients for repeat glioblastoma surgery. Methods: Clinical data from 66 patients with recurrent glioblastoma and repeated surgery were analyzed. Kaplan-Meier plots were produced to illustrate survival in each of the three NSGS prognostic groups, and Cox proportional hazard regression was used to identify prognostic variables. Multivariable analysis was used to identify differences in survival in the three prognostic groups. Results: Six variables significantly affected postoperative survival: preoperative Karnofsky Performance Status (KPS) < 70 (p = 0.002), decreased KPS after second surgery (p = 0.012), ependymal involvement (p = 0.002), tumor volume ⧠50 cm3 (p = 0.021), age (p = 0.033) and Ki-67 (p = 0.005). Retrospective application of the criteria previously published by Park CK et al showed that median postoperative survival for the three prognostic groups was 390 days (0 points), 279 days (1 point), and 80 days (2 points), respectively. Conclusion: Several prognostic variables to predict postoperative survival in patients with recurrent glioblastoma were identified and should be considered when selecting patient for repeat surgery. The NSGS scoring system was useful as there were significant differences in postoperative survival between its three prognostic groups.
RESUMEN
Background: Due to the solely subjective histopathological assessment, the WHO 2016 classification of human meningiomas is subject to interobserver variation. Consequently, the need for more reliable and objective markers are highly needed. The aim of this pilot study was to apply genome-wide DNA methylation analysis on a series of atypical meningiomas to evaluate the practical utility of this approach, examine whether prognostic subclasses are achieved and investigate whether there is an association between the methylation subclasses with poor prognosis and time to recurrence. NF1/2 mutation analyses were also performed to explore the prognostic value of such mutations in these atypical meningiomas. Methods: Twenty intracranial WHO grade II atypical meningiomas from adult patients were included. They consisted of 10 cases with recurrence (group I), and 10 cases without recurrence (group II). The formalin-fixed and paraffin-embedded tissues underwent standardized genome-wide DNA methylation analysis, and the profiles were matched with the reference library and tumor classifier from Heidelberg. NF1/2 somatic mutation analyses were performed using the CNSv1panel from Düsseldorf. Results: Eighteen out of 20 cases matched to the meningioma class using the common brain tumor classifier (v11b4). Four of these cases matched to a methylation subclass related to a prognostic subgroup based on a cut-off of 0.9. NF2 mutations were detected in 55% of cases across both groups, and the most prominent copy number alterations were chromosomal losses of 22q, 1p and 14q. No significant NF1 mutations were identified. Conclusions: Genome-wide DNA methylation profiling represents a useful tool in the diagnostics of meningiomas, however, methodological adjustments need to be addressed.
RESUMEN
Diagnostics of tumours of the central nervous system has for decades been based entirely on microscopy. A con-siderable degree of diagnostic interobserver variability has been observed due to imprecise histological criteria. In the revised WHO classification for central nervous system tumours from 2016, several diagnoses are now defined by both histological and molecular features and constitute "integrated diagnoses". The development based on new technologies like next-generation sequencing and DNA methylation profiling is discussed in this review as well as its implication for daily diagnostics and the patient.
Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Glioma/diagnóstico , Glioma/genética , HumanosRESUMEN
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) removes temozolomide-induced alkylation, thereby preventing DNA damage and cytotoxicity. We investigated the prognostic effect of different MGMT methylation levels on overall and progression-free survival in 327 patients with primary glioblastoma undergoing standard treatment. We obtained MGMT methylation level in 4 CpG sites using pyrosequencing. The association between MGMT methylation level and survival was investigated using Cox proportional hazards model and an extension to detect time-varying effects. We found an association between MGMT methylation level and overall survival (OS) from around 9 months after the diagnosis, with no association between MGMT methylation level and OS before that. For patients surviving at least 9 months even small increases in MGMT methylation level are significantly beneficial (HR = 0.97, 95% CI [0.96, 0.98]). The predictive ability of MGMT methylation level on OS from 9 months after diagnosis has a Harrel's C of 66%. We conclude that the MGMT methylation level is strongly associated with survival only for patients surviving beyond 9 months with considerable effects for levels much lower than previously reported. Prognostic evaluation of cut-points of MGMT methylation levels and of CpG island site selection should take the time-varying effect on overall survival into account.
Asunto(s)
Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/metabolismo , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Glioblastoma/epidemiología , Glioblastoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Anciano , Neoplasias Encefálicas/mortalidad , Islas de CpG/genética , Metilación de ADN , Epigénesis Genética , Femenino , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Masculino , Metilación , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Supervivencia sin Progresión , Análisis de SupervivenciaRESUMEN
Pregnancy-associated plasma protein-A (PAPP-A) was originally isolated in 1974, as one of four proteins of placental origin found in high concentrations in the blood of pregnant women. In the early 1990s several laboratories reported novel protease activity against insulin-like growth factor binding protein-4 (IGFBP-4) in media conditioned by several cell types. This activity was unique, as it appeared to require the presence of IGF to cleave IGFBP-4. In 1999, this IGF-dependent IGFBP-4 protease activity was isolated from human fibroblast conditioned media and identified as PAPP-A. Subsequently, PAPP-A was shown to be expressed by a variety of cell types, and thus no longer could be considered to be just "pregnancy-associated". This review will describe what is currently known about the structure of PAPP-A and about its function as an IGFBP protease, with a focus on new insights obtained through study of a PAPP-A knock-out mouse model and on potential clinical applications.
Asunto(s)
Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína Plasmática A Asociada al Embarazo/fisiología , Somatomedinas/metabolismo , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Proteína Plasmática A Asociada al Embarazo/química , Proteína Plasmática A Asociada al Embarazo/genética , Proteína Plasmática A Asociada al Embarazo/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Distribución TisularRESUMEN
Aquaporin-4 (AQP4) is the predominant water channel in the brain and is expressed in high density in astrocytes. By fluxing water along osmotic gradients, AQP4 contributes to brain volume and ion homeostasis. Here we ask whether deletion of Aqp4 leads to upregulation of the gap junctional proteins connexin-43 (Cx43) and connexin-30 (Cx30). These molecules couple adjacent astrocytes to each other and allow water and ions to redistribute within the astrocyte syncytium. Immunogold analysis of parietal cortex and hippocampus showed that the number of gap junctions per capillary profile is increased in AQP4 knockout (AQP4 KO) mice. The most pronounced changes were observed for Cx43 in hippocampus where the number of connexin labeled gap junctions increased by 100% following AQP4 KO. Western blot analysis of whole tissue homogenates showed no change in the amount of Cx43 or Cx30 protein after AQP4 KO. However, AQP4 KO led to a significant increase in the amount of Cx43 in a Triton X-100 insoluble fraction. This fraction is associated with connexin assembly into gap junctional plaques in the plasma membrane. In line with our immunoblot data, RT-qPCR showed no significant increase in Cx43 and Cx30 mRNA levels after AQP4 KO. Our findings suggest that AQP4 KO leads to increased aggregation of Cx43 into gap junctions and provide a putative mechanistic basis for the enhanced tracer coupling in hippocampi of AQP4 KO mice. The increased number of gap junctions in AQP4 deficient mice may explain why Aqp4 deletion has rather modest effects on brain volume and K+ homeostasis.
Asunto(s)
Acuaporina 4/deficiencia , Astrocitos/metabolismo , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica/genética , Adenosina Trifosfatasas/metabolismo , Animales , Acuaporina 4/genética , Astrocitos/ultraestructura , Encéfalo/metabolismo , Encéfalo/ultraestructura , Conexina 30/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/ultraestructura , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía InmunoelectrónicaRESUMEN
Astrocytes are highly polarised cells with processes that ensheath microvessels, cover the brain surface, and abut synapses. The endfoot membrane domains facing microvessels and pia are enriched with aquaporin-4 water channels (AQP4) and other members of the dystrophin associated protein complex (DAPC). Several lines of evidence show that loss of astrocyte polarization, defined by the loss of proteins that are normally enriched in astrocyte endfeet, is a common denominator of several neurological diseases such as mesial temporal lobe epilepsy, Alzheimer's disease, and stroke. Little is known about the mechanisms responsible for inducing astrocyte polarization in vivo. Here we introduce the term endfoot-basal lamina junctional complex (EBJC) to denote the proteins that consolidate and characterize the gliovascular interface. The present study was initiated in order to resolve the developmental profile of the EBJC in mouse brain. We show that the EBJC is established after the first week postnatally. Through a combination of methodological approaches, including light microscopic and high resolution immunogold cytochemistry, quantitative RT-PCR, and Western blotting, we demonstrate that the different members of this complex exhibit distinct ontogenic profileswith the extracellular matrix (ECM) proteins laminin and agrin appearing earlier than the other members of the complex. Specifically, while laminin and agrin expression peak at P7, quantitative immunoblot analyses indicate that AQP4, α-syntrophin, and the inwardly rectifying K(+) channel Kir4.1 expression increases towards adulthood. Our findings are consistent with ECM having an instructive role in establishing astrocyte polarization in postnatal development and emphasize the need to explore the involvement of ECM in neurological disease.
Asunto(s)
Astrocitos/fisiología , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Polaridad Celular/fisiología , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Acuaporina 4/genética , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Astrocitos/ultraestructura , Distroglicanos/genética , Distroglicanos/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Microscopía Inmunoelectrónica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , EmbarazoRESUMEN
By proteolytic cleavage of insulin-like growth factor binding proteins, the metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) is able to control the biological activity of insulin-like growth factors. PAPP-A circulates in pregnancy as a proteolytically inactive complex, disulfide bound to the proform of eosinophil major basic protein (proMBP). We here demonstrate that co-transfection of mammalian cells with PAPP-A and proMBP cDNA results in the formation of a covalent PAPP-A/proMBP complex in which PAPP-A is inhibited. Formation of the complex also occurs when PAPP-A and proMBP synthesized separately are incubated. Complex formation was monitored by Western blotting, and by using an immunoassay specific for the complex. Using mutagenesis, we further demonstrate that the complex forms in a specific manner and depends on the presence of two proMBP cysteine residues. Mutated proMBP, in which Cys-51 and -169 are replaced by serine, is unable to form the covalent complex with PAPP-A. Of particular interest, such mutated proMBP further lacks the ability to inhibit PAPP-A. For the first time, this conclusively demonstrates that proMBP is a proteinase inhibitor. We further conclude that proMBP inhibits PAPP-A in an unusual manner, not paralleled by other proteinase inhibitors of our knowledge, which requires proMBP to be covalently bound to PAPP-A by disulfide bonds. ProMBP binding to PAPP-A most likely either abrogates substrate access to the active site of PAPP-A or induces a conformational change in the structure of PAPP-A, as we, by further mutagenesis, were able to exclude that the inhibitory mechanism of proMBP is based on a cysteine switch-like mechanism.
Asunto(s)
Proteínas Sanguíneas/metabolismo , Proteína Plasmática A Asociada al Embarazo/metabolismo , Inhibidores de Proteasas/metabolismo , Ribonucleasas/metabolismo , Sustitución de Aminoácidos , Proteínas Sanguíneas/genética , Línea Celular , ADN Complementario/genética , Disulfuros/metabolismo , Proteínas en los Gránulos del Eosinófilo , Eosinófilos/química , Eosinófilos/metabolismo , Femenino , Humanos , Riñón/citología , Riñón/embriología , Cinética , Plásmidos , Embarazo , Proteína Plasmática A Asociada al Embarazo/química , Unión Proteica , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Serina/metabolismo , TransfecciónRESUMEN
Pregnancy-associated plasma protein-A (PAPP-A) is a large multidomain metalloprotease involved in cleavage of IGF binding protein (IGFBP)-4 and -5 thereby causing release of bioactive IGF. Individual domains of PAPP-A have been characterized in vitro, including the metzincin proteolytic domain important for IGFBP proteolytic activity, short consensus repeats critical for cell surface association, and Lin-12/Notch repeat module demonstrated to determine IGFBP substrate specificity. To test the hypothesis that specific cleavage of IGFBP-4 by PAPP-A in close proximity to the cell surface is required for development of lesions in a murine model of atherosclerosis, the following PAPP-A transgenic (Tg) mice were generated: Tg(E483A), which lacks all PAPP-A proteolytic activity; Tg(D1499A), which selectively lacks proteolytic activity against IGFBP-4; and Tg(K1296A/K1316A), in which cell surface binding is compromised. Following cross-breeding with apolipoprotein E (ApoE) knockout (KO) mice, ApoE KO/Tg mice were fed a high-fat diet to promote aortic lesion development. Lesion area was increased 2-fold in aortas from ApoE KO/Tg wild-type compared with ApoE KO mice (P < 0.001). However, there was no significant increase in the lesion area in any of the ApoE KO/Tg mutant mice. We conclude that PAPP-A proteolytic activity is required for the lesion-promoting effect of PAPP-A and that its specificity must be directed against IGFBP-4. Furthermore, our data demonstrate that cleavage of IGFBP-4 at a distance from the cell surface, and hence from the IGF receptor, is not effective in promoting the development of the atherosclerotic lesions. Thus, PAPP-A exerts its effect while bound to the cell surface in vivo.
Asunto(s)
Aterosclerosis/metabolismo , Proteína Plasmática A Asociada al Embarazo/metabolismo , Animales , Aorta/citología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocitos del Músculo Liso/metabolismo , Proteína Plasmática A Asociada al Embarazo/genéticaRESUMEN
Pregnancy-associated plasma protein-A (PAPP-A) is an important regulatory component of the IGF system. Through proteolysis of inhibitory IGF binding proteins (IGFBPs), PAPP-A acts as a positive modulator of local IGF signaling in a variety of biological systems. A role of IGF in the progression of several common forms of human cancer is now emerging, and therapeutic intervention of IGF receptor signaling is currently being explored. However, little is known about the activities of other components of the IGF system in relation to cancer. We hypothesized that PAPP-A acts to enhance tumor growth in vivo. To test this hypothesis, we overexpressed wild-type PAPP-A or a mutant PAPP-A with markedly reduced IGFBP protease activity in SKOV3 cells, a human ovarian carcinoma cell line with low tumorigenic potential. In vitro, SKOV3 clones with elevated PAPP-A expression (PAPP-A-1, PAPP-A-28) showed accelerated anchorage-independent growth in soft agar assays compared to clones overexpressing mutant PAPP-A (E483Q-1, E483Q-5) and vector controls. PAPP-A-28, with the highest PAPP-A expression and IGFBP proteolytic activity, also had markedly increased cell invasion through Matrigel. In vivo, we found significantly accelerated tumor growth rates of PAPP-A-overexpressing SKOV3 clones compared with mutant PAPP-A and controls. Investigation of angiogenesis indicated that overexpression of PAPP-A favored development of mature tumor vasculature and that tumor precursors of PAPP-A-28 in particular had a significantly higher degree of vascularization months before obvious tumor development. In conclusion, our data show that PAPP-A proteolytic activity enhances the tumorigenic potential of ovarian cancer cells and establish a novel tumor growth-promoting role of PAPP-A.
Asunto(s)
Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Proteína Plasmática A Asociada al Embarazo/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Desnudos , Neoplasias Ováricas/genética , Reacción en Cadena de la Polimerasa , Proteína Plasmática A Asociada al Embarazo/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Pregnancy-associated plasma protein-A2 (PAPP-A2) is a novel homolog of PAPP-A in the metzincin superfamily. However, compared with the accumulating data on PAPP-A, very little is known about PAPP-A2. In this study, we determined the tissue expression pattern of PAPP-A2 mRNA in wild-type (WT) mice and characterized the phenotype of mice with global PAPP-A2 deficiency. Tissues expressing PAPP-A2 in WT mice were more limited than those expressing PAPP-A. The highest PAPP-A2 mRNA expression was found in the placenta, with abundant expression in fetal, skeletal, and reproductive tissues. Heterozygous breeding produced the expected Mendelian distribution for the pappa2 gene and viable homozygous PAPP-A2 knockout (KO) mice that were normal size at birth. The most striking phenotype of the PAPP-A2 KO mouse was postnatal growth retardation. Male and female PAPP-A2 KO mice had 10 and 25-30% lower body weight, respectively, than WT littermates. Adult femur and body length were also reduced in PAPP-A2 KO mice, but without significant effects on bone mineral density. PAPP-A2 KO mice were fertile, but with compromised fecundity. PAPP-A expression was not altered to compensate for the loss of PAPP-A2 expression, and proteolysis of PAPP-A2's primary substrate, IGF-binding protein-5, was not altered in fibroblasts from PAPP-A2 KO embryos. In conclusion, tissue expression patterns and biological consequences of gene KO indicate distinct physiological roles for PAPP-A2 and PAPP-A in mice.