Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 2): 43-51, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305785

RESUMEN

The methylerythritol phosphate (MEP) pathway is a metabolic pathway that produces the isoprenoids isopentyl pyrophosphate and dimethylallyl pyrophosphate. Notably, the MEP pathway is present in bacteria and not in mammals, which makes the enzymes of the MEP pathway attractive targets for discovering new anti-infective agents due to the reduced chances of off-target interactions leading to side effects. There are seven enzymes in the MEP pathway, the third of which is IspD. Two crystal structures of Burkholderia thailandensis IspD (BtIspD) were determined: an apo structure and that of a complex with cytidine triphosphate (CTP). Comparison of the CTP-bound BtIspD structure with the apo structure revealed that CTP binding stabilizes the loop composed of residues 13-19. The apo structure of Mycobacterium paratuberculosis IspD (MpIspD) is also reported. The melting temperatures of MpIspD and BtIspD were evaluated by circular dichroism. The moderate Tm values suggest that a thermal shift assay may be feasible for future inhibitor screening. Finally, the binding affinity of CTP for BtIspD was evaluated by isothermal titration calorimetry. These structural and biophysical data will aid in the discovery of IspD inhibitors.


Asunto(s)
Burkholderia , Mycobacterium avium subsp. paratuberculosis , Difosfatos , Cristalografía por Rayos X
2.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 6): 137-143, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37223974

RESUMEN

The compound ethyl-adenosyl monophosphate ester (ethyl-AMP) has been shown to effectively inhibit acetyl-CoA synthetase (ACS) enzymes and to facilitate the crystallization of fungal ACS enzymes in various contexts. In this study, the addition of ethyl-AMP to a bacterial ACS from Legionella pneumophila resulted in the determination of a co-crystal structure of this previously elusive structural genomics target. The dual functionality of ethyl-AMP in both inhibiting ACS enzymes and promoting crystallization establishes its significance as a valuable resource for advancing structural investigations of this class of proteins.


Asunto(s)
Genómica , Acetilcoenzima A/metabolismo , Cristalografía por Rayos X , Adenosina Monofosfato/metabolismo
3.
ACS Med Chem Lett ; 13(7): 1099-1108, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859861

RESUMEN

We describe the identification and characterization of a series of covalent inhibitors of the C-terminal kinase domain (CTKD) of MSK1. The initial hit was identified via a high-throughput screening and represents a rare example of a covalent inhibitor which acts via an SNAr reaction of a 2,5-dichloropyrimidine with a cysteine residue (Cys440). The covalent mechanism of action was supported by in vitro biochemical experiments and was confirmed by mass spectrometry. Ultimately, the displacement of the 2-chloro moiety was confirmed by crystallization of an inhibitor with the CTKD. We also disclose the crystal structures of three compounds from this series bound to the CTKD of MSK1, in addition to the crystal structures of two unrelated RSK2 covalent inhibitors bound to the CTKD of MSK1.

4.
PLoS One ; 16(3): e0241738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760815

RESUMEN

Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain's frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen's high mortality is the lack of sensitivity of N. fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N. fowleri. The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N. fowleri research. In 2017, 178 N. fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.


Asunto(s)
Descubrimiento de Drogas , Naegleria fowleri/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Adenosilhomocisteinasa/antagonistas & inhibidores , Adenosilhomocisteinasa/química , Adenosilhomocisteinasa/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación de Dinámica Molecular , Naegleria fowleri/genética , Fosfoglicerato Mutasa/antagonistas & inhibidores , Fosfoglicerato Mutasa/química , Fosfoglicerato Mutasa/metabolismo , Estructura Cuaternaria de Proteína , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteoma , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA