Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 138(17): 1554-1569, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34077954

RESUMEN

Trained immunity (TI) is a proinflammatory program induced in monocyte/macrophages upon sensing of specific pathogens and is characterized by immunometabolic and epigenetic changes that enhance cytokine production. Maladaptive activation of TI (ie, in the absence of infection) may result in detrimental inflammation and development of disease; however, the exact role and extent of inappropriate activation of TI in the pathogenesis of human diseases is undetermined. In this study, we uncovered the oncogene-induced, maladaptive induction of TI in the pathogenesis of a human inflammatory myeloid neoplasm (Erdheim-Chester disease, [ECD]), characterized by the BRAFV600E oncogenic mutation in monocyte/macrophages and excess cytokine production. Mechanistically, myeloid cells expressing BRAFV600E exhibit all molecular features of TI: activation of the AKT/mammalian target of rapamycin signaling axis; increased glycolysis, glutaminolysis, and cholesterol synthesis; epigenetic changes on promoters of genes encoding cytokines; and enhanced cytokine production leading to hyperinflammatory responses. In patients with ECD, effective therapeutic strategies combat this maladaptive TI phenotype; in addition, pharmacologic inhibition of immunometabolic changes underlying TI (ie, glycolysis) effectively dampens cytokine production by myeloid cells. This study revealed the deleterious potential of inappropriate activation of TI in the pathogenesis of human inflammatory myeloid neoplasms and the opportunity for inhibition of TI in conditions characterized by maladaptive myeloid-driven inflammation.


Asunto(s)
Enfermedad de Erdheim-Chester/genética , Inflamación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Células Cultivadas , Epigénesis Genética , Enfermedad de Erdheim-Chester/inmunología , Enfermedad de Erdheim-Chester/patología , Humanos , Inmunidad , Inflamación/inmunología , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Oncogenes , Mutación Puntual , Proteínas Proto-Oncogénicas B-raf/inmunología
2.
J Am Soc Nephrol ; 32(8): 1913-1932, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155062

RESUMEN

BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia. METHODS: To evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection. RESULTS: Meta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation-related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment. CONCLUSIONS: This study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.


Asunto(s)
Citocina TWEAK/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Receptor de TWEAK/metabolismo , Adulto , Animales , Anticuerpos Neutralizantes/farmacología , Apoptosis , Proliferación Celular/efectos de los fármacos , Quistes/metabolismo , Quistes/patología , Citocina TWEAK/antagonistas & inhibidores , Citocina TWEAK/genética , Citocina TWEAK/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis , Expresión Génica , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos , Masculino , Ratones , Persona de Mediana Edad , FN-kappa B/metabolismo , Riñón Poliquístico Autosómico Dominante/fisiopatología , Transducción de Señal , Receptor de TWEAK/genética
3.
Am J Physiol Renal Physiol ; 320(5): F693-F705, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33615892

RESUMEN

Polycystin-1 (PC-1) is a transmembrane protein, encoded by the PKD1 gene, mutated in autosomal dominant polycystic kidney disease (ADPKD). This common genetic disorder, characterized by cyst formation in both kidneys, ultimately leading to renal failure, is still waiting for a definitive treatment. The overall function of PC-1 and the molecular mechanism responsible for cyst formation are slowly coming to light, but they are both still intensively studied. In particular, PC-1 has been proposed to act as a mechanosensor, although the precise signal that activates the mechanical properties of this protein has been long debated and questioned. In this review, we report studies and evidence of PC-1 function as a mechanosensor, starting from the peculiarity of its structure, through the long journey that progressively shed new light on the potential initiating events of cystogenesis, concluding with the description of PC-1 recently shown ability to sense the mechanical stimuli provided by the stiffness of the extracellular environment. These new findings have potentially important implications for the understanding of ADPKD pathophysiology and potentially for designing new therapies.NEW & NOTEWORTHY Polycystin-1 has recently emerged as a possible receptor able to sense extracellular stiffness and to negatively control the cellular actomyosin contraction machinery. Here, we revisit a large body of literature on autosomal dominant polycystic kidney disease providing a new possible mechanistic view on the topic.


Asunto(s)
Matriz Extracelular/metabolismo , Riñón/metabolismo , Mecanotransducción Celular , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Microambiente Celular , Matriz Extracelular/patología , Predisposición Genética a la Enfermedad , Humanos , Riñón/patología , Mutación , Fenotipo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Conformación Proteica , Relación Estructura-Actividad , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética
4.
FASEB J ; 34(5): 6493-6507, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32239723

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic disorder, characterized by bilateral renal cyst formation. Multiple pathways are de-regulated in cystic epithelia offering good opportunities for therapy. Others and we have previously reported that metabolic reprogramming, including alterations of the TCA cycle, are prominent features of ADPKD. Several lines of evidence suggest that mitochondrial impairment might be responsible for the metabolic alterations. Here, we performed morphologic and morphometric evaluation of mitochondria by TEM in an orthologous mouse model of PKD caused by mutations in the Pkd1 gene (Ksp-Cre;Pkd1flox/- ). Furthermore, we measured mitochondrial respiration by COX and SDH enzymatic activity in situ. We found several alterations including reduced mitochondrial mass, altered structure and fragmentation of the mitochondrial network in cystic epithelia of Ksp-Cre;Pkd1flox/- mice. At the molecular level, we found reduced expression of the pro-fusion proteins OPA1 and MFN1 and up-regulation of the pro-fission protein DRP1. Importantly, administration of Mdivi-1, which interferes with DRP1 rescuing mitochondrial fragmentation, significantly reduced kidney/body weight, cyst formation, and improved renal function in Ksp-Cre;Pkd1flox/- mice. Our data indicate that impaired mitochondrial structure and function play a role in disease progression, and that their improvement can significantly modify the course of the disease.


Asunto(s)
Quistes/patología , Modelos Animales de Enfermedad , Mitocondrias/patología , Enfermedades Renales Poliquísticas/patología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/fisiología , Animales , Proliferación Celular , Quistes/genética , Quistes/metabolismo , Progresión de la Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo
5.
Development ; 144(2): 201-210, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993979

RESUMEN

Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.


Asunto(s)
Ventrículos Cerebrales/embriología , Cilios/fisiología , Morfogénesis , Complejos Multiproteicos/fisiología , Neurogénesis/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Polaridad Celular/efectos de los fármacos , Ventrículos Cerebrales/efectos de los fármacos , Ventrículos Cerebrales/metabolismo , Cilios/efectos de los fármacos , Embrión de Mamíferos , Femenino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Embarazo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
6.
Am J Physiol Renal Physiol ; 315(1): F57-F73, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29537311

RESUMEN

Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1ε expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1α isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1ε and CK1α are increased in mouse polycystic kidneys. Inhibition of CK1ε and CK1α may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates.


Asunto(s)
Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Caseína Quinasa Ialfa/antagonistas & inhibidores , Riñón/efectos de los fármacos , Enfermedades Renales Poliquísticas/prevención & control , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Piridinas/farmacología , Roscovitina/farmacología , Animales , Caseína Cinasa 1 épsilon/genética , Caseína Cinasa 1 épsilon/metabolismo , Caseína Quinasa Ialfa/genética , Caseína Quinasa Ialfa/metabolismo , Catálisis , Cromatografía de Afinidad/métodos , Modelos Animales de Enfermedad , Humanos , Riñón/enzimología , Riñón/patología , Ratones Transgénicos , Enfermedades Renales Poliquísticas/enzimología , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Purinas/metabolismo , Piridinas/metabolismo , Roscovitina/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Clin Exp Nephrol ; 21(2): 203-211, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27278932

RESUMEN

BACKGROUND: ADPKD is a renal pathology caused by mutations of PKD1 and PKD2 genes, which encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 plays an important role regulating several signal transducers, including cAMP and mTOR, which are involved in abnormal cell proliferation of ADPKD cells leading to the development and expansion of kidney cysts that are a typical hallmark of this disease. Therefore, the inhibition of both pathways could potentiate the reduction of cell proliferation enhancing benefits for ADPKD patients. METHODS: The inhibition of cAMP- and mTOR-related signalling was performed by Cl-IB-MECA, an agonist of A3 receptors, and rapamycin, respectively. Protein kinase activity was evaluated by immunoblot and cell growth was analyzed by direct cell counting. RESULTS: The activation of A3AR by the specific agonist Cl-IB-MECA causes a marked reduction of CREB, mTOR, and ERK phosphorylation in kidney tissues of Pkd1 flox/-: Ksp-Cre polycystic mice and reduces cell growth in ADPKD cell lines, but not affects the kidney weight. The combined sequential treatment with rapamycin and Cl-IB-MECA in ADPKD cells potentiates the reduction of cell proliferation compared with the individual compound by the inhibition of CREB, mTOR, and ERK kinase activity. Conversely, the simultaneous application of these drugs counteracts their effect on cell growth, because the inhibition of ERK kinase activity is lost. CONCLUSION: The double treatment with rapamycin and Cl-IB-MECA may have synergistic effects on the inhibition of cell proliferation in ADPKD cells suggesting that combined therapies could improve renal function in ADPKD patients.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Proliferación Celular/efectos de los fármacos , AMP Cíclico/antagonistas & inhibidores , Riñón/efectos de los fármacos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Proteína de Unión a CREB/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Fosforilación , Riñón Poliquístico Autosómico Dominante/enzimología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPP/deficiencia , Canales Catiónicos TRPP/genética , Factores de Tiempo
8.
J Am Soc Nephrol ; 27(7): 1958-69, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26534924

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is an important cause of ESRD for which there exists no approved therapy in the United States. Defective glucose metabolism has been identified as a feature of ADPKD, and inhibition of glycolysis using glucose analogs ameliorates aggressive PKD in preclinical models. Here, we investigated the effects of chronic treatment with low doses of the glucose analog 2-deoxy-d-glucose (2DG) on ADPKD progression in orthologous and slowly progressive murine models created by inducible inactivation of the Pkd1 gene postnatally. As previously reported, early inactivation (postnatal days 11 and 12) of Pkd1 resulted in PKD developing within weeks, whereas late inactivation (postnatal days 25-28) resulted in PKD developing in months. Irrespective of the timing of Pkd1 gene inactivation, cystic kidneys showed enhanced uptake of (13)C-glucose and conversion to (13)C-lactate. Administration of 2DG restored normal renal levels of the phosphorylated forms of AMP-activated protein kinase and its target acetyl-CoA carboxylase. Furthermore, 2DG greatly retarded disease progression in both model systems, reducing the increase in total kidney volume and cystic index and markedly reducing CD45-positive cell infiltration. Notably, chronic administration of low doses (100 mg/kg 5 days per week) of 2DG did not result in any obvious sign of toxicity as assessed by analysis of brain and heart histology as well as behavioral tests. Our data provide proof of principle support for the use of 2DG as a therapeutic strategy in ADPKD.


Asunto(s)
Desoxiglucosa/uso terapéutico , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Masculino , Ratones
9.
J Am Soc Nephrol ; 27(4): 1135-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26271513

RESUMEN

Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2α (PI3K-C2α) in renal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2α resides at the recycling endosome compartment in proximity to the primary cilium base. In this subcellular location, PI3K-C2α controlled the activation of Rab8, a key mediator of cargo protein targeting to the primary cilium. Consistently, partial reduction of PI3K-C2α was sufficient to impair elongation of the cilium and the ciliary transport of polycystin-2, as well as to alter proliferation signals linked to polycystin activity. In agreement, heterozygous deletion of PI3K-C2α in mice induced cilium elongation defects in kidney tubules and predisposed animals to cyst development, either in genetic models of polycystin-1/2 reduction or in response to ischemia/reperfusion-induced renal damage. These results indicate that PI3K-C2α is required for the transport of ciliary components such as polycystin-2, and partial loss of this enzyme is sufficient to exacerbate the pathogenesis of cystic kidney disease.


Asunto(s)
Cilios/fisiología , Fosfatidilinositol 3-Quinasas Clase II/fisiología , Enfermedades Renales Quísticas , Canales Catiónicos TRPP/fisiología , Animales , Enfermedades Renales Quísticas/etiología , Masculino , Ratones , Transducción de Señal
10.
J Neurosci ; 35(31): 11153-68, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26245976

RESUMEN

Directional beating of ependymal (E) cells' cilia in the walls of the ventricles in the brain is essential for proper CSF flow. E cells display two forms of planar cell polarity (PCP): rotational polarity of individual cilium and translational polarity (asymmetric positioning of cilia in the apical area). The orientation of individual E cells varies according to their location in the ventricular wall (location-specific PCP). It has been hypothesized that hydrodynamic forces on the apical surface of radial glia cells (RGCs), the embryonic precursors of E cells, could guide location-specific PCP in the ventricular epithelium. However, the detection mechanisms for these hydrodynamic forces have not been identified. Here, we show that the mechanosensory proteins polycystic kidney disease 1 (Pkd1) and Pkd2 are present in primary cilia of RGCs. Ablation of Pkd1 or Pkd2 in Nestin-Cre;Pkd1(flox/flox) or Nestin-Cre;Pkd2(flox/flox) mice, affected PCP development in RGCs and E cells. Early shear forces on the ventricular epithelium may activate Pkd1 and Pkd2 in primary cilia of RGCs to properly polarize RGCs and E cells. Consistently, Pkd1, Pkd2, or primary cilia on RGCs were required for the proper asymmetric localization of the PCP protein Vangl2 in E cells' apical area. Analyses of single- and double-heterozygous mutants for Pkd1 and/or Vangl2 suggest that these genes function in the same pathway to establish E cells' PCP. We conclude that Pkd1 and Pkd2 mechanosensory proteins contribute to the development of brain PCP and prevention of hydrocephalus. SIGNIFICANCE STATEMENT: This study identifies key molecules in the development of planar cell polarity (PCP) in the brain and prevention of hydrocephalus. Multiciliated ependymal (E) cells within the brain ventricular epithelium generate CSF flow through ciliary beating. E cells display location-specific PCP in the orientation and asymmetric positioning of their cilia. Defects in this PCP can result in hydrocephalus. Hydrodynamic forces on radial glial cells (RGCs), the embryonic progenitors of E cells, have been suggested to guide PCP. We show that the mechanosensory proteins Pkd1 and Pkd2 localize to primary cilia in RGCs, and their ablation disrupts the development of PCP in E cells. Early shear forces on RGCs may activate Pkd1 and Pkd2 in RGCs' primary cilia to properly orient E cells. This study identifies key molecules in the development of brain PCP and prevention of hydrocephalus.


Asunto(s)
Polaridad Celular/genética , Ventrículos Cerebrales/metabolismo , Cilios/metabolismo , Células Ependimogliales/metabolismo , Canales Catiónicos TRPP/genética , Animales , Epéndimo/citología , Epéndimo/metabolismo , Células Ependimogliales/citología , Ratones , Ratones Noqueados , Canales Catiónicos TRPP/metabolismo
11.
J Biol Chem ; 289(10): 6404-6414, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24459142

RESUMEN

Mutations of the PKD1 and PKD2 genes, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively, lead to autosomal dominant polycystic kidney disease. Interestingly, up-regulation or down-regulation of PKD1 or PKD2 leads to polycystic kidney disease in animal models, but their interrelations are not completely understood. We show here that full-length PC1 that interacts with PC2 via a C-terminal coiled-coil domain regulates PC2 expression in vivo and in vitro by down-regulating PC2 expression in a dose-dependent manner. Expression of the pathogenic mutant R4227X, which lacks the C-terminal coiled-coil domain, failed to down-regulate PC2 expression, suggesting that PC1-PC2 interaction is necessary for PC2 regulation. The proteasome and autophagy are two pathways that control protein degradation. Proteins that are not degraded by proteasomes precipitate in the cytoplasm and are transported via histone deacetylase 6 (HDAC6) toward the aggresomes. We found that HDAC6 binds to PC2 and that expression of full-length PC1 accelerates the transport of the HDAC6-PC2 complex toward aggresomes, whereas expression of the R4227X mutant fails to do so. Aggresomes are engulfed by autophagosomes, which then fuse with the lysosome for degradation; this process is also known as autophagy. We have now shown that PC1 overexpression leads to increased degradation of PC2 via autophagy. Interestingly, PC1 does not activate autophagy generally. Thus, we have now uncovered a new pathway suggesting that when PC1 is expressed, PC2 that is not bound to PC1 is directed to aggresomes and subsequently degraded via autophagy, a control mechanism that may play a role in autosomal dominant polycystic kidney disease pathogenesis.


Asunto(s)
Autofagia , Fagosomas , Canales Catiónicos TRPP/metabolismo , Animales , Perros , Regulación hacia Abajo , Histona Desacetilasa 6 , Histona Desacetilasas/metabolismo , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Redes y Vías Metabólicas , Ratones , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/antagonistas & inhibidores , Canales Catiónicos TRPP/genética
12.
BMC Cell Biol ; 16: 15, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25947155

RESUMEN

BACKGROUND: Polycystin-1 (PC-1) is a large plasma membrane receptor, encoded by the PKD1 gene, which is mutated in most cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD). The disease is characterized by renal cysts. The precise function of PC-1 remains elusive, although several studies suggest that it can regulate the cellular shape in response to external stimuli. We and others reported that PC-1 regulates the actin cytoskeleton and cell migration. RESULTS: Here we show that cells over-expressing PC-1 display enhanced adhesion rates to the substrate, while cells lacking PC-1 have a reduced capability to adhere. In search for the mechanism responsible for this new property of PC-1 we found that this receptor is able to regulate the stability of the microtubules, in addition to its capability to regulate the actin cytoskeleton. The two cytoskeletal components are acting in a coordinated fashion. Notably, we uncovered that PC-1 regulation of the microtubule cytoskeleton impacts on the turnover rates of focal adhesions in migrating cells and we link all these properties to the capability of PC-1 to regulate the activation state of Focal Adhesion Kinase (FAK). CONCLUSIONS: In this study we show several new features of the PC-1 receptor in modulating microtubules and adhesion dynamics, which are essential for its capability to regulate migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Adhesión Celular , Línea Celular , Movimiento Celular , Perros , Recuperación de Fluorescencia tras Fotoblanqueo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Canales Catiónicos TRPP/antagonistas & inhibidores , Canales Catiónicos TRPP/genética
13.
J Am Soc Nephrol ; 25(11): 2573-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24722439

RESUMEN

Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8(gt/gt)-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8(gt/gt) mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms.


Asunto(s)
Autoantígenos/genética , Daño del ADN/fisiología , Enfermedades Renales Quísticas/genética , Proteínas de Neoplasias/genética , Transducción de Señal/genética , Animales , Línea Celular , Línea Celular Transformada , Cilios/patología , Células Madre Embrionarias/citología , Fibroblastos/citología , Fibroblastos/fisiología , Proteínas Fluorescentes Verdes/genética , Riñón/patología , Enfermedades Renales Quísticas/patología , Enfermedades Renales Quísticas/fisiopatología , Ratones Transgénicos , Células Fotorreceptoras de Vertebrados/patología , Fase S/fisiología
14.
Hum Mol Genet ; 21(26): 5456-71, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23001567

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) and von Hippel-Lindau (VHL) disease lead to large kidney cysts that share pathogenetic features. The polycystin-1 (PC1) and pVHL proteins may therefore participate in the same key signaling pathways. Jade-1 is a pro-apoptotic and growth suppressive ubiquitin ligase for beta-catenin and transcriptional coactivator associated with histone acetyltransferase activity that is stabilized by pVHL in a manner that correlates with risk of VHL renal disease. Thus, a relationship between Jade-1 and PC1 was sought. Full-length PC1 bound, stabilized and colocalized with Jade-1 and inhibited Jade-1 ubiquitination. In contrast, the cytoplasmic tail or the naturally occurring C-terminal fragment of PC1 (PC1-CTF) promoted Jade-1 ubiquitination and degradation, suggesting a dominant-negative mechanism. ADPKD-associated PC1 mutants failed to regulate Jade-1, indicating a potential disease link. Jade-1 ubiquitination was mediated by Siah-1, an E3 ligase that binds PC1. By controlling Jade-1 abundance, PC1 and the PC1-CTF differentially regulate Jade-1-mediated transcriptional activity. A key target of PC1, the cyclin-dependent kinase inhibitor p21, is also up-regulated by Jade-1. Through Jade-1, PC1 and PC1 cleaved forms may exert fine control of beta-catenin and canonical Wnt signaling, a critical pathway in cystic renal disease. Thus, Jade-1 is a transcription factor and ubiquitin ligase whose activity is regulated by PC1 in a manner that is physiologic and may correlate with disease. Jade-1 may be an important therapeutic target in renal cystogenesis.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Canales Catiónicos TRPP/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Apoptosis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Semivida , Proteínas de Homeodominio/genética , Humanos , Riñón/citología , Riñón/patología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Canales Catiónicos TRPP/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/metabolismo
15.
Biochem Biophys Res Commun ; 444(4): 473-9, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24472557

RESUMEN

The PKD1 gene is essential for a number of biological functions, and its loss-of-function causes autosomal dominant polycystic kidney disease (ADPKD). The gene is developmentally regulated and believed to play an essential role in renal development. Previous studies have shown that manipulating murine renal organ cultures with dominant-negative forms of the Pkd1 gene impaired ureteric bud (UB) branching. In the current study, we analyzed different stages of renal development in two distinct mouse models carrying either a null mutation or inactivation of the last two exons of Pkd1. Surprisingly, metanephric explants from Pkd1-deleted kidneys harvested at day E11.5 did not show defects of UB branching and elongation, estimated by cytokeratin staining on fixed tissues or by Hoxb7-GFP time-lapse imaging. However, renal explants from Pkd1-mutants isolated at day E14.5 showed impaired nephrogenesis. Notably, we observed cell migratory defects in the developing endothelial compartment. Previous studies had implicated the Pkd1 gene in controlling cell migration and collagen deposition through PI3 kinases. In line with these studies, our results show that wild-type explants treated with PI3-kinase inhibitors recapitulate the endothelial defects observed in Pkd1 mutants, whereas treatment with VEGF only partially rescued the defects. Our data are consistent with a role for the Pkd1 gene in the endothelium that may be required for proper nephrogenesis.


Asunto(s)
Glomérulos Renales/embriología , Glomérulos Renales/fisiopatología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/fisiopatología , Canales Catiónicos TRPP/genética , Animales , Movimiento Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Eliminación de Gen , Glomérulos Renales/metabolismo , Ratones , Mutación , Técnicas de Cultivo de Órganos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Canales Catiónicos TRPP/metabolismo
16.
Nephrol Dial Transplant ; 29(8): 1480-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24459136

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. The disease is caused by mutations in either the PKD1 or the PKD2 gene. Progress has been made in understanding the molecular basis of the disease leading to the general agreement on ADPKD being a loss-of-function disease. Identification of signalling cascades dysfunctional in the cystic epithelia has led to several pre-clinical studies of animal models using a variety of inhibitors to slow disease progression. These were followed by clinical trials, some of which generated promising results, although an approved therapy is still lacking. Here, we summarize and discuss recent work providing evidence that metabolic alterations can be observed in ADPKD. In particular, we will focus our discussion on the potential role of glucose metabolism in the pathogenesis of ADPKD. These recent findings provide a new perspective for the understanding of the pathobiology of ADPKD and open potential new avenues for therapeutical approaches. At the same time, these studies also raise important and intriguing biological and medical questions that will need to be addressed experimentally prior to embracing a more enthusiastic view of the applicability of the results.


Asunto(s)
Manejo de la Enfermedad , Metabolismo Energético , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Riñón/metabolismo , Mutación , Riñón Poliquístico Autosómico Dominante , Animales , ADN/genética , Humanos , Riñón/patología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/terapia , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
17.
EMBO Mol Med ; 16(6): 1379-1403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684863

RESUMEN

Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.


Asunto(s)
Aspartatoamoníaco Ligasa , Modelos Animales de Enfermedad , Enfermedades Renales Poliquísticas , Animales , Humanos , Ratones , Aspartatoamoníaco Ligasa/metabolismo , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Progresión de la Enfermedad , Riñón/patología , Riñón/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/genética
18.
Nat Metab ; 5(3): 385-397, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879119

RESUMEN

Depriving cells of nutrients triggers an energetic crisis, which is resolved by metabolic rewiring and organelle reorganization. Primary cilia are microtubule-based organelles at the cell surface, capable of integrating multiple metabolic and signalling cues, but their precise sensory function is not fully understood. Here we show that primary cilia respond to nutrient availability and adjust their length via glutamine-mediated anaplerosis facilitated by asparagine synthetase (ASNS). Nutrient deprivation causes cilia elongation, mediated by reduced mitochondrial function, ATP availability and AMPK activation independently of mTORC1. Of note, glutamine removal and replenishment is necessary and sufficient to induce ciliary elongation or retraction, respectively, under nutrient stress conditions both in vivo and in vitro by restoring mitochondrial anaplerosis via ASNS-dependent glutamate generation. Ift88-mutant cells lacking cilia show reduced glutamine-dependent mitochondrial anaplerosis during metabolic stress, due to reduced expression and activity of ASNS at the base of cilia. Our data indicate a role for cilia in responding to, and possibly sensing, cellular glutamine levels via ASNS during metabolic stress.


Asunto(s)
Aspartatoamoníaco Ligasa , Glutamina , Glutamina/metabolismo , Aspartatoamoníaco Ligasa/metabolismo , Cilios/metabolismo , Transducción de Señal
19.
Nat Commun ; 14(1): 6513, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845212

RESUMEN

Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.


Asunto(s)
Quiste Pancreático , Riñón Poliquístico Autosómico Recesivo , Ratones , Animales , Receptores de Superficie Celular/metabolismo , Riñón/metabolismo , Riñón Poliquístico Autosómico Recesivo/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Túbulos Renales/metabolismo
20.
EMBO Mol Med ; 15(6): e16910, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158102

RESUMEN

MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Línea Celular Tumoral , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Linfoma/patología , Linfoma de Células B/tratamiento farmacológico , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-myc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA