Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arch Orthop Trauma Surg ; 144(6): 2703-2710, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38727813

RESUMEN

INTRODUCTION: Anterior cruciate ligament (ACL) reconstruction remains associated with the risk of re-rupture and persisting rotational instability. Additional extraarticular anterolateral stabilization procedures stabilize the tibial internal rotation and lead to lower ACL failure rate and improved knee stability. However, data for additional stabilization of tibial external rotation is lacking and the importance of an anteromedial stabilization procedure is less well evaluated. Aim of this study is to investigate the influence of an extraarticular anteromedial stabilization procedure for the stabilization of the tibial external rotation and protection of the ACL from these rotational forces. METHODS: Internal and external rotations of the tibia were applied to a finite element (FE) model with anatomical ACL, posterior cruciate ligament (PCL), lateral collateral ligament (LCL), medial collateral ligament (MCL) and intact medial and lateral meniscus. Five additional anatomic structures (Anteromedial stabilization/anteromedial ligament, AML, augmented superficial medial collateral ligament, sMCL, posterior oblique ligament, POL, anterolateral ligament, ALL, and popliteal tendon, PLT) were added to the FE model separately and then combined. The force histories within all structures were measured and determined for each case. RESULTS: The anteromedial stabilization or imaginary AML was the main secondary stabilizer of tibial external rotation (90% of overall ACL force reduction). The AML reduced the load on the ACL by 9% in tibial external rotation which could not be achieved by an augmented sMCL (-1%). The AML had no influence in tibial internal rotation (-1%). In the combined measurements with all additional structures (AML, ALL, PLT, POL) the load on the ACL was reduced by 10% in tibial external rotation. CONCLUSION: This study showed that an additional anteromedial stabilization procedure secures the tibial external rotation and has the most protective effect on the ACL during these external rotational forces.


Asunto(s)
Ligamento Cruzado Anterior , Tibia , Humanos , Tibia/cirugía , Ligamento Cruzado Anterior/cirugía , Rotación , Análisis de Elementos Finitos , Reconstrucción del Ligamento Cruzado Anterior/métodos , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/fisiología , Fenómenos Biomecánicos , Inestabilidad de la Articulación/prevención & control , Inestabilidad de la Articulación/cirugía , Inestabilidad de la Articulación/fisiopatología , Lesiones del Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/prevención & control
2.
Biomed Eng Online ; 20(1): 53, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078371

RESUMEN

BACKGROUND: Active human body models (AHBM) consider musculoskeletal movement and joint stiffness via active muscle truss elements in the finite element (FE) codes in dynamic application. In the latest models, such as THUMS™ Version 5, nearly all human muscle groups are modeled in form of one-dimensional truss elements connecting each joint. While a lot of work has been done to improve the active and passive behavior of this 1D muscle system in the past, the volumetric muscle system of THUMS was modeled in a much more simplified way based on Post Mortem Human Subject (PMHS) test data. The stiffness changing effect of isometric contraction was hardly considered for the volumetric muscle system of whole human body models so far. While previous works considered this aspect for single muscles, the effect of a change in stiffness due to isometric contraction of volumetric muscles on the AHBM behavior and computation time is yet unknown. METHODS: In this study, a simplified frontal impact using the THUMS Version 5 AM50 occupant model was simulated. Key parameters to regulate muscle tissue stiffness of solid elements in THUMS were identified for the material model MAT_SIMPLIFIED_FOAM and different stiffness states were predefined for the buttock and thigh. RESULTS: During frontal crash, changes in muscle stiffness had an effect on the overall AHBM behavior including expected injury outcome. Changes in muscle stiffness for the thigh and pelvis, as well as for the entire human body model and for strain-rate-dependent stiffness definitions based on literature data had no significant effect on the computation time. DISCUSSION: Kinematics, peak impact force and stiffness changes were in general compliance with the literature data. However, different experimental setups had to be considered for comparison, as this topic has not been fully investigated experimentally in automotive applications in the past. Therefore, this study has limitations regarding validation of the frontal impact results. CONCLUSION: Variations of default THUMS material model parameters allow an efficient change in stiffness of volumetric muscles for whole AHBM applications. The computation time is unaffected by altering muscle stiffness using the method suggested in this work. Due to a lack of validation data, the results of this work can only be validated with certain limitations. In future works, the default material models of THUMS could be replaced with recently published models to achieve a possibly more biofidelic muscle behavior, which would even allow a functional dependency of the 1D and 3D muscle systems. However, the effect on calculation time and model stability of these models is yet unknown and should be considered in future studies for efficient AHBM applications.


Asunto(s)
Músculo Esquelético , Fenómenos Biomecánicos , Cadáver , Análisis de Elementos Finitos , Seguridad
3.
J Theor Biol ; 458: 184-206, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30149008

RESUMEN

A numerical computer model was developed in order to describe the complex self-sealing mechanism of injured Delosperma cooperi leaves. For this purpose, the leaf anatomy was simplified to a model consisting of five concentric tissue layers. Specific parameters (modulus of elasticity, permeability, porosity, etc.) were assigned to each tissue type for modelling its physical properties. These parameters were either determined experimentally from living plant material or taken from literature. The developed computer model considers the leaf as a liquid-filled porous body within a continuum approach in order to determine the governing equations. The modelling of the wound accounts for both the injury of peripheral tissues and the free surfaces caused by the incision. The loss of water through these free surfaces initiates the self-sealing process. It is further shown that the tissue permeability and the reflection coefficient (relative permeability of a cell membrane for solutes) are the determining parameters of the self-sealing process, whereas the modulus of elasticity has a negligible influence. Thus, the self-sealing mechanism is a hydraulically driven process which leads to a local (incision region) and global (total leaf) contraction of the leaf. The accuracy of the modelled self-sealing process was validated by comparing simulation results with experiments conducted on natural plant leaves. The results will serve as valuable input for developing novel, bio-inspired technical products with self-sealing function.


Asunto(s)
Aizoaceae/metabolismo , Modelos Biológicos , Hojas de la Planta/metabolismo , Aizoaceae/citología , Análisis de Elementos Finitos , Hojas de la Planta/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA