Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 20: 540-551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440172

RESUMEN

The present work covers novel herbicidal lead structures that contain a 2,3-dihydro[1,3]thiazolo[4,5-b]pyridine scaffold as structural key feature carrying a substituted phenyl side chain. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity against commercially important weeds in broadacre crops, e.g., wheat and corn. The desired substituted 2,3-dihydro[1,3]thiazolo[4,5-b]pyridines were prepared via an optimized BH3-mediated reduction involving tris(pentafluorophenyl)borane as a strong Lewis acid. Remarkably, greenhouse trials showed that some of the target compounds outlined herein display promising control of grass weed species in preemergence application, combined with a dose response window that enables partial selectivity in certain crops.

2.
Pest Manag Sci ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104300

RESUMEN

BACKGROUND: Weed control is a significant challenge for farmers around the globe. Of the various methods available for combatting weeds, small molecules remain the most effective and versatile technology to date. In the search for novel chemical entities with new modes of action toward herbicide-resistant weeds, we have investigated hexahydrofuro[3,4-b]furan-based acyl-acyl carrier protein (ACP) thioesterase inhibitors inspired by X-ray co-crystal structure-based modeling studies. RESULTS: By exploiting scaffold hopping concepts and molecular modeling studies we were able to identify new hexahydrofuro[3,4-b]furan-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. CONCLUSION: The present work covers a series of novel herbicidal lead structures that possess a hexahydrofuro[3,4-b]furan scaffold as a structural key feature, carrying ortho-substituted aryloxy side chains. Based on an optimized synthetic approach a broad structure-activity relationship (SAR) study was carried out. The new compounds emerging from our modeling-inspired structural variations show good acyl-ACP thioesterase inhibition in line with promising initial herbicidal activity. Glasshouse trials showed that the hexahydrofuro[3,4-b]furans outlined herein display good control of cold and warm season grass-weed species in pre-emergence application. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors also showed promising efficacy against warm season weeds that are difficult to control. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Pest Manag Sci ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158367

RESUMEN

BACKGROUND: The sustainable control of weed populations is a significant challenge facing farmers around the world. Although various methods for the control of weeds exist, the use of small molecule herbicides remains the most effective and versatile approach. Striving to find novel herbicides that combat resistant weeds via the targeting of plant specific modes of action (MoAs), we further investigated the bicyclic class of acyl-acyl carrier protein (ACP) thioesterase (FAT) inhibitors in an effort to find safe and efficacious lead candidates. RESULTS: Utilizing scaffold hopping and bioisosteric replacements strategies, we explored new bicyclic inhibitors of FAT. Amongst the investigated compounds we identified new structural motifs that showed promising target affinity coupled with good in vivo efficacy against commercially important weed species. We further studied the structure-activity relationship (SAR) of the novel dihydropyranopyridine structural class which showed promise as a new type of FAT inhibiting herbicides. CONCLUSION: The current work presents how scaffold hopping approaches can be implemented to successfully find novel and efficacious herbicidal structures that can be further optimized for potential use in sustainable agricultural practices. The identified dihydropyranopyridine bicyclic class of herbicides were demonstrated to have in vitro inhibitory activity against the plant specific MoA FAT as well as showing promising control of a variety of weed species, particularly grass weeds in greenhouse trials on levels competitive with commercial standards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Pest Manag Sci ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334233

RESUMEN

BACKGROUND: There are various methods to control weeds, that represent considerable challenges for farmers around the globe, although applying small molecular compounds is still the most effective and versatile technology to date. In the search for novel chemical entities with new modes-of-action that can control weeds displaying resistance, we have investigated two spirocyclic classes of acyl-ACP thioesterase inhibitors based on X-ray co-crystal structures and subsequent modelling studies. RESULTS: By exploiting scaffold-hopping and isostere concepts, we were able to identify new spirolactam-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. CONCLUSION: The present work covers a series of novel herbicidal lead structures that contain a spirocyclic lactam as a structural key feature carrying ortho-substituted benzyl or heteroarylmethylene side chains. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity. Glasshouse trials showed that the spirolactams outlined herein display promising control of grass-weed species in pre-emergence application combined with dose-response windows that enable partial selectivity in wheat and corn. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors showed efficacy against resistant grass weeds such as Alopecurus myosuroides and Lolium spp. on competitive levels compared with commercial standards. © 2024 Society of Chemical Industry.

5.
Pest Manag Sci ; 79(6): 2264-2280, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36815643

RESUMEN

BACKGROUND: Whilst there are several methods to control weeds, which continuously plague farmers around the globe, the application of small molecular compounds is still the most effective technology to date. Plants can evolve to become resistant to PPO-inhibitors, a class of herbicides in commercial use since the 1960s. It is therefore essential to continuously develop new herbicides based on this mode-of-action with enhanced intrinsic activity, an improved resistance profile and favourable physicochemical properties. Based on an Amaranthus PPO crystal structure and subsequent modelling studies, halogen-substituted pyrazoles have been investigated as isosteres of uracil-based PPO-inhibitors. RESULTS: By combining structural features from the commercial PPO-inhibitors tiafenacil and pyraflufen-ethyl and by investigating receptor-binding properties, we identified new promising pyrazole-based lead structures showing strong activity in vitro and in vivo against economically important weeds of the Amaranthus genus: A. retroflexus, and resistant A. palmeri and A. tuberculatus. CONCLUSION: The present work covers a series of novel PPO-inhibiting compounds that contain a pyrazole ring and a substituted thioacetic acid sidechain attached to the core phenyl group. These compounds show good receptor fit in line with excellent herbicidal activity against weeds that plague corn and rice crops with low application rates. This, in combination with promising selectivity in corn, have the potential to mitigate and affect weeds that have become resistant to some of the current market standards. Remarkably, some of the novel PPO-inhibitors outlined herein show efficacies against economically important weeds that were superior to recently commercialized and structurally related tiafenacil. © 2023 Society of Chemical Industry.


Asunto(s)
Herbicidas , Peste , Herbicidas/química , Protoporfirinógeno-Oxidasa , Pirazoles/farmacología , Malezas
6.
J Agric Food Chem ; 71(47): 18270-18284, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37269295

RESUMEN

There are several methods to control weeds, which impose particular challenges for farmers in all parts of the world, although applying small molecular compounds still remains the most efficient technology to date. However, plants can evolve to become resistant toward active ingredients which is also the case for protoporphyrinogen oxidase (PPO) inhibitors, a class of highly effective herbicides in use for more than 50 years. Hence, it is essential to continuously discover and develop new herbicidal PPO inhibitors with enhanced intrinsic activity, an improved resistance profile, enhanced crop safety, favorable physicochemical properties, and a clean toxicological profile. By modifying structural key features from known PPO inhibitors such as tiafenacil, inspired by isostere and mix&match concepts in combination with modeling investigations based on a wild-type Amaranthus crystal structure, we have found new promising lead structures showing strong activity in vitro and in vivo against several notorious dicotyledon and monocotyledon weeds with emerging resistance (e.g., Amaranthus palmeri, Amaranthus tuberculatus, Lolium rigidum, and Alopecurus myosuroides). While several phenyl uracils carrying an isoxazoline motif in their thio-linked side chain showed promising resistance-breaking potential against different Amaranthus species, introducing a thioacrylamide side chain afforded outstanding efficacy against resistant grass weeds.


Asunto(s)
Amaranthus , Herbicidas , Magnoliopsida , Protoporfirinógeno-Oxidasa/genética , Herbicidas/farmacología , Malezas , Poaceae , Resistencia a los Herbicidas
7.
J Agric Food Chem ; 71(47): 18212-18226, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37677080

RESUMEN

In the search for new chemical entities that can control resistant weeds by addressing novel modes of action (MoAs), we were interested in further exploring a compound class that contained a 1,8-naphthyridine core. By leveraging scaffold hopping methodologies, we were able to discover the new thiazolopyridine compound class that act as potent herbicidal molecules. Further biochemical investigations allowed us to identify that the thiazolopyridines inhibit acyl-acyl carrier protein (ACP) thioesterase (FAT), with this being further confirmed via an X-ray cocrystal structure. Greenhouse trials revealed that the thiazolopyridines display excellent control of grass weed species in pre-emergence application coupled with dose response windows that enable partial selectivity in certain crops.


Asunto(s)
Herbicidas , Herbicidas/química , Malezas/metabolismo , Tioléster Hidrolasas/metabolismo , Productos Agrícolas/metabolismo , Control de Malezas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA