Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 38(9): 1464-6, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23632519

RESUMEN

The experimental and numerical evaluation of the shadow effect in kinoform diffractive gratings for the terahertz (THz) range is given. This effect limits the diffractive efficiency of dense gratings, which are the base of the elements suited for convenient beam focusing and imaging in THz. The observed effect of redirecting most of the incident energy into stray -1st diffractive order is observed and discussed. The presented results show the great significance of the shadow effect in selected kinoform gratings and prove the utility of the used methodology of numerical simulations.

2.
Opt Lett ; 37(20): 4320-2, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23073449

RESUMEN

Passive terahertz (THz) setups require optical elements with large diameters for optimal harvesting of weak signals. High f-number implies sophisticated aspheric designs to ensure optimal resolution and good energetic efficiency. Trial and error testing of such optics is expensive and numerical modeling is time consuming; hence, we propose extremely cheap diffractive lenses for THz made of regular paper. They are easy to manufacture even with large diameters, and the optical function can be easily customized, which can be used for initial experimental testing of THz setups. Characterization of the proposed diffractive lenses with time-domain spectroscopy is presented and discussed.

3.
Nanoscale ; 10(28): 13426-13431, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29972177

RESUMEN

Increasing the requirements on telecommunications systems such as the need for higher data rates and connectivity via the Internet of things results in continuously increasing amounts of electromagnetic radiation in ever-higher telecommunications bands (up to terahertz). This can generate unwanted electromagnetic radiation that can affect the operation of electronic devices and human health. Here, we demonstrate that nonconductive and lightweight, graphene-based composites can shield more than 99.99% of the electromagnetic energy in the sub-THz range mainly via absorption. This contrasts with state-of-the-art electromagnetic radiation shielding materials that simply redirect the energy of the radiation from a protected area via conduction-based reflection mechanisms. This shifts the problem of electromagnetic pollution from one place to another. We have demonstrated that the proposed composites can be fabricated by industrial compatible methods and are characterized by specific shielding efficiency values that exceed 30 dB cm3 g-1, which is more than those for typical metals used today. Therefore these materials might help to solve the problem of electromagnetic environmental pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA