Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Cell Sci ; 133(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31907206

RESUMEN

Morgana (Mora, also known as CHORD in flies) and its mammalian homologue, called CHORDC1 or CHP1, is a highly conserved cysteine and histidine-rich domain (CHORD)-containing protein that has been proposed to function as an Hsp90 co-chaperone. Morgana deregulation promotes carcinogenesis in both mice and humans while, in Drosophila, loss of mora causes lethality and a complex mitotic phenotype that is rescued by a human morgana transgene. Here, we show that Drosophila Mora localises to mitotic spindles and co-purifies with the Hsp90-R2TP-TTT supercomplex and with additional well-known Hsp90 co-chaperones. Acute inhibition of Mora function in the early embryo results in a dramatic reduction in centrosomal microtubule stability, leading to small spindles nucleated from mitotic chromatin. Purified Mora binds to microtubules directly and promotes microtubule polymerisation in vitro, suggesting that Mora directly regulates spindle dynamics independently of its Hsp90 co-chaperone role.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Mitosis/genética , Huso Acromático/metabolismo , Animales , Humanos , Polimerizacion
2.
J Med Genet ; 58(4): 254-263, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32527956

RESUMEN

BACKGROUND: Mutation in S-phase cyclin A-associated protein rin the endoplasmic reticulum (SCAPER) have been found across ethnicities and have been shown to cause variable penetrance of an array of pathological traits, including intellectual disability, retinitis pigmentosa and ciliopathies. METHODS: Human clinical phenotyping, surgical testicular sperm extraction and testicular tissue staining. Generation and analysis of short spindle 3 (ssp3) (SCAPER orthologue) Drosophila CAS9-knockout lines. In vitro microtubule (MT) binding assayed by total internal reflection fluorescence microscopy. RESULTS: We show that patients homozygous for a SCAPER mutation lack SCAPER expression in spermatogonia (SPG) and are azoospermic due to early defects in spermatogenesis, leading to the complete absence of meiotic cells. Interestingly, Drosophila null mutants for the ubiquitously expressed ssp3 gene are viable and female fertile but male sterile. We further show that male sterility in ssp3 null mutants is due to failure in both chromosome segregation and cytokinesis. In cells undergoing male meiosis, the MTs emanating from the centrosomes do not appear to interact properly with the chromosomes, which remain dispersed within dividing spermatocytes (SPCs). In addition, mutant SPCs are unable to assemble a normal central spindle and undergo cytokinesis. Consistent with these results, an in vitro assay demonstrated that both SCAPER and Ssp3 directly bind MTs. CONCLUSIONS: Our results show that SCAPER null mutations block the entry into meiosis of SPG, causing azoospermia. Null mutations in ssp3 specifically disrupt MT dynamics during male meiosis, leading to sterility. Moreover, both SCAPER and Ssp3 bind MTs in vitro. These results raise the intriguing possibility of a common feature between human and Drosophila meiosis.


Asunto(s)
Proteínas Portadoras/genética , Infertilidad Masculina/genética , Microtúbulos/genética , Serina Endopeptidasas/genética , Animales , Segregación Cromosómica/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Predisposición Genética a la Enfermedad , Humanos , Infertilidad Masculina/patología , Masculino , Meiosis/genética , Mutación/genética , Espermatocitos/crecimiento & desarrollo , Espermatocitos/patología , Huso Acromático/genética , Huso Acromático/patología , Testículo/crecimiento & desarrollo , Testículo/patología
3.
PLoS Genet ; 13(5): e1006784, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28505193

RESUMEN

INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animales , Línea Celular , Drosophila/genética , Drosophila/metabolismo , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Mitosis , Ubiquitinación
4.
Chromosoma ; 127(4): 489-504, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30120539

RESUMEN

Many genes are required for the assembly of the mitotic apparatus and for proper chromosome behavior during mitosis and meiosis. A fruitful approach to elucidate the mechanisms underlying cell division is the accurate phenotypic characterization of mutations in these genes. Here, we report the identification and characterization of diamond (dind), an essential Drosophila gene required both for mitosis of larval brain cells and for male meiosis. Larvae homozygous for any of the five EMS-induced mutations die in the third-instar stage and exhibit multiple mitotic defects. Mutant brain cells exhibit poorly condensed chromosomes and frequent chromosome breaks and rearrangements; they also show centriole fragmentation, disorganized mitotic spindles, defective chromosome segregation, endoreduplicated metaphases, and hyperploid and polyploid cells. Comparable phenotypes occur in mutant spermatogonia and spermatocytes. The dind gene encodes a non-conserved protein with no known functional motifs. Although the Dind protein exhibits a rather diffuse localization in both interphase and mitotic cells, fractionation experiments indicate that some Dind is tightly associated with the chromatin. Collectively, these results suggest that loss of Dind affects chromatin organization leading to defects in chromosome condensation and integrity, which in turn affect centriole stability and spindle assembly. However, our results do not exclude the possibility that Dind directly affects some behaviors of the spindle and centrosomes.


Asunto(s)
Cromosomas de Insectos/genética , Proteínas de Drosophila/genética , Drosophila/citología , Meiosis , Espermatocitos/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Rotura Cromosómica , Segregación Cromosómica , Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/genética , Larva/citología , Masculino , Mutación , Fenotipo , Espermatocitos/citología
5.
EMBO Rep ; 17(10): 1396-1409, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27562601

RESUMEN

Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Animales , Encéfalo/metabolismo , Proteínas de Unión a Calmodulina/genética , Línea Celular , Drosophila , Complejo Dinactina/metabolismo , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Mitosis/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Transporte de Proteínas , Interferencia de ARN
6.
PLoS Genet ; 10(10): e1004739, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340516

RESUMEN

Topoisomerase II is a major component of mitotic chromosomes but its role in the assembly and structural maintenance of chromosomes is rather controversial, as different chromosomal phenotypes have been observed in various organisms and in different studies on the same organism. In contrast to vertebrates that harbor two partially redundant Topo II isoforms, Drosophila and yeasts have a single Topo II enzyme. In addition, fly chromosomes, unlike those of yeast, are morphologically comparable to vertebrate chromosomes. Thus, Drosophila is a highly suitable system to address the role of Topo II in the assembly and structural maintenance of chromosomes. Here we show that modulation of Top2 function in living flies by means of mutant alleles of different strength and in vivo RNAi results in multiple cytological phenotypes. In weak Top2 mutants, meiotic chromosomes of males exhibit strong morphological abnormalities and dramatic segregation defects, while mitotic chromosomes of larval brain cells are not affected. In mutants of moderate strength, mitotic chromosome organization is normal, but anaphases display frequent chromatin bridges that result in chromosome breaks and rearrangements involving specific regions of the Y chromosome and 3L heterochromatin. Severe Top2 depletion resulted in many aneuploid and polyploid mitotic metaphases with poorly condensed heterochromatin and broken chromosomes. Finally, in the almost complete absence of Top2, mitosis in larval brains was virtually suppressed and in the rare mitotic figures observed chromosome morphology was disrupted. These results indicate that different residual levels of Top2 in mutant cells can result in different chromosomal phenotypes, and that the effect of a strong Top2 depletion can mask the effects of milder Top2 reductions. Thus, our results suggest that the previously observed discrepancies in the chromosomal phenotypes elicited by Topo II downregulation in vertebrates might depend on slight differences in Topo II concentration and/or activity.


Asunto(s)
Estructuras Cromosómicas/genética , ADN-Topoisomerasas de Tipo II/genética , Heterocromatina/genética , Mitosis/genética , Alelos , Animales , Cromatina/genética , Drosophila melanogaster , Regulación de la Expresión Génica , Masculino , Mutación , Fenotipo , Espermatocitos , Cromosoma X/genética , Cromosoma Y/genética
7.
J Cell Sci ; 125(Pt 3): 584-8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22389398

RESUMEN

The spindle is a highly dynamic molecular machine that mediates precise chromosome segregation during cell division. Spindle size can vary dramatically, not only between species but also between different cells of the same organism. However, the reasons for spindle size variability are largely unknown. Here we show that variations in spindle size can be linked to a precise developmental requirement. Drosophila species have dramatically different sperm flagella that range in length from 0.3 mm in D. persimilis to 58.3 mm in D. bifurca. We found that males of different species exhibit striking variations in meiotic spindle size, which positively correlate with sperm length, with D. bifurca showing 30-fold larger spindles than D. persimilis. This suggests that primary spermatocytes of Drosophila species manufacture and store amounts of tubulin that are proportional to the axoneme length and use these tubulin pools for spindle assembly. These findings highlight an unsuspected plasticity of the meiotic spindle in response to the selective forces controlling sperm length.


Asunto(s)
Drosophila/ultraestructura , Cola del Espermatozoide/ultraestructura , Animales , Evolución Biológica , Segregación Cromosómica , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Masculino , Meiosis , Microscopía Fluorescente , Especificidad de la Especie , Cola del Espermatozoide/metabolismo , Tubulina (Proteína)/metabolismo
9.
J Cell Sci ; 124(Pt 5): 706-17, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21285248

RESUMEN

Mitotic spindle assembly in centrosome-containing cells relies on two main microtubule (MT) nucleation pathways, one based on centrosomes and the other on chromosomes. However, the relative role of these pathways is not well defined. In Drosophila, mutants without centrosomes can form functional anastral spindles and survive to adulthood. Here we show that mutations in the Drosophila misato (mst) gene inhibit kinetochore-driven MT growth, lead to the formation of monopolar spindles and cause larval lethality. In most prophase cells of mst mutant brains, asters are well separated, but collapse with progression of mitosis, suggesting that k-fibers are essential for maintenance of aster separation and spindle bipolarity. Analysis of mst; Sas-4 double mutants showed that mitotic cells lacking both the centrosomes and the mst function form polarized MT arrays that resemble monopolar spindles. MT regrowth experiments after cold exposure revealed that in mst; Sas-4 metaphase cells MTs regrow from several sites, which eventually coalesce to form a single polarized MT array. By contrast, in Sas-4 single mutants, chromosome-driven MT regrowth mostly produced robust bipolar spindles. Collectively, these results indicate that kinetochore-driven MT formation is an essential process for proper spindle assembly in Drosophila somatic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Fenotipo , Huso Acromático/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrosoma/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Cinetocoros/metabolismo , Masculino , Mitocondrias/metabolismo , Mitosis , Modelos Biológicos , Mutación
10.
Exp Cell Res ; 318(12): 1375-80, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22580224

RESUMEN

Mitotic spindle assembly in centrosome-containing cells relies on two main microtubule (MT) nucleation pathways, one based on centrosomes and the other on chromosomes. However, the relative role of these pathways is not well defined. Here we review the studies on spindle formation in Drosophila centrosome-containing cells. Mutants with impaired centrosome function assemble functional anastral spindles in somatic tissues and survive to adulthood. In contrast, mutants defective in chromosome-driven MT formation form highly aberrant mitotic spindles and die at larval stages. The requirements for spindle assembly in Drosophila male meiotic cells are diametrically opposed to those of somatic cells. Spermatocytes assemble morphologically normal spindles in the complete absence of chromosome-induced MTs, but are unable to organize a functional spindle in the absence of centrosomal MTs. Male meiotic spindles are much larger than mitotic spindles as they contain most of the tubulin needed for sperm tail formation. We suggest that the centrosome-based mechanism of spindle assembly in spermatocytes reflects their need for rapid and efficient polymerization of a particularly large amount of tubulin.


Asunto(s)
Centrosoma/metabolismo , Drosophila , Cinetocoros/metabolismo , Microtúbulos/fisiología , Huso Acromático/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Huso Acromático/genética
11.
Cells ; 12(6)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36980263

RESUMEN

The Drosophila abnormal spindle (asp) gene was discovered about 40 years ago and shown to be required for both mitotic and meiotic cell division. Subsequent studies showed that asp is highly conserved and that mutations in its human ortholog ASPM (Abnormal Spindle-like Microcephaly-associated; or MCPH5) are the most common cause of autosomal recessive primary microcephaly. This finding greatly stimulated research on ASPM and its fly and mouse (Aspm) orthologs. The three Asp orthologous proteins bind the microtubules (MTs) minus ends during cell division and also function in interphase nuclei. Investigations on different cell types showed that Asp/Aspm/ASPM depletion disrupts one or more of the following mitotic processes: aster formation, spindle pole focusing, centrosome-spindle coupling, spindle orientation, metaphase-to-anaphase progression, chromosome segregation, and cytokinesis. In addition, ASPM physically interacts with components of the DNA repair and replication machineries and is required for the maintenance of chromosomal DNA stability. We propose the working hypothesis that the asp/Aspm/ASPM genes play the same conserved functions in Drosophila, mouse, and human cells. Human microcephaly is a genetically heterogeneous disorder caused by mutations in 30 different genes that play a variety of functions required for cell division and chromosomal DNA integrity. Our hypothesis postulates that ASPM recapitulates the functions of most human microcephaly genes and provides a justification for why ASPM is the most frequently mutated gene in autosomal recessive primary microcephaly.


Asunto(s)
Microcefalia , Animales , Humanos , Ratones , ADN , Drosophila/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Mitosis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
12.
Curr Biol ; 18(4): 303-9, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18291647

RESUMEN

SPD-2 is a C. elegans centriolar protein required for both centriole duplication and pericentriolar material (PCM) recruitment [1-4]. SPD-2 is conserved in Drosophila (DSpd-2) and is a component of the fly centriole [5-7]. The analysis of a P element-induced hypomorphic mutation has shown that DSpd-2 is primarily required for PCM recruitment at the sperm centriole but is dispensable for both centriole duplication and aster formation [5]. Here we show that null mutations carrying early stop codons in the DSpd-2 coding sequence suppress astral microtubule (MT) nucleation in both neuroblasts (NBs) and spermatocytes. These mutations also disrupt proper Miranda localization in dividing NBs, as previously observed in mutants lacking astral MTs [8-10]. Spermatocyte analysis revealed that DSpd-2 is enriched at both the centrioles and the PCM and is required for the maintenance of cohesion between the two centrioles but not for centriole duplication. We found that DSpd-2 localization at the centrosome requires the wild-type activity of Asl but is independent of the function of D-PLP, Cnn, gamma-tubulin, DGrip91, and D-TACC. Conversely, DSpd-2 mutants displayed normal centrosomal accumulations of Asl and D-PLP, strongly reduced amounts of Cnn, gamma-tubulin, and DGrip91, and diffuse localization of D-TACC. These results indicate that DSpd-2 functions in a very early step of the PCM recruitment pathway.


Asunto(s)
Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Microtúbulos/metabolismo , Espermatocitos/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/genética , Larva/citología , Larva/metabolismo , Masculino , Huso Acromático/metabolismo
13.
Cells ; 9(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604778

RESUMEN

Moonlighting proteins can perform one or more additional functions besides their primary role. It has been posited that a protein can acquire a moonlighting function through a gradual evolutionary process, which is favored when the primary and secondary functions are exerted in different cellular compartments. Transcription factors (TFs) and splicing factors (SFs) control processes that occur in interphase nuclei and are strongly reduced during cell division, and are therefore in a favorable situation to evolve moonlighting mitotic functions. However, recently published moonlighting protein databases, which comprise almost 400 proteins, do not include TFs and SFs with secondary mitotic functions. We searched the literature and found several TFs and SFs with bona fide moonlighting mitotic functions, namely they localize to specific mitotic structure(s), interact with proteins enriched in the same structure(s), and are required for proper morphology and functioning of the structure(s). In addition, we describe TFs and SFs that localize to mitotic structures but cannot be classified as moonlighting proteins due to insufficient data on their biochemical interactions and mitotic roles. Nevertheless, we hypothesize that most TFs and SFs with specific mitotic localizations have either minor or redundant moonlighting functions, or are evolving towards the acquisition of these functions.


Asunto(s)
Mitosis/fisiología , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/metabolismo , Humanos
14.
Curr Biol ; 16(2): 195-201, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16431372

RESUMEN

Phosphatidylinositol transfer proteins (PITPs) are highly conserved polypeptides that bind phosphatidylinositol or phosphatidylcholine monomers, facilitating their transfer from one membrane compartment to another . Although PITPs have been implicated in a variety of cellular functions, including lipid-mediated signaling and membrane trafficking, the precise biological roles of most PITPs remain to be elucidated . Here we show for the first time that a class I PITP is involved in cytokinesis. We found that giotto (gio), a Drosophila gene that encodes a class I PITP, serves an essential function required for both mitotic and meiotic cytokinesis. Neuroblasts and spermatocytes from gio mutants both assemble regular actomyosin rings. However, these rings fail to constrict to completion, leading to cytokinesis failures. Moreover, gio mutations cause an abnormal accumulation of Golgi-derived vesicles at the equator of spermatocyte telophases, suggesting that Gio is implicated in membrane-vesicle fusion. Consistent with these results, we found that Gio is enriched at the cleavage furrow, the ER, and the spindle envelope. We propose that Gio mediates transfer of lipid monomers from the ER to the equatorial membrane, causing a specific local enrichment in phosphatidylinositol. This change in membrane composition would ultimately facilitate vesicle fusion, allowing membrane addition to the furrow and/or targeted delivery of proteins required for cytokinesis.


Asunto(s)
Citocinesis/fisiología , Proteínas de Drosophila/fisiología , Drosophila/citología , Proteínas de Transferencia de Fosfolípidos/fisiología , Actomiosina/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Prueba de Complementación Genética , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas de Transferencia de Fosfolípidos/análisis , Proteínas de Transferencia de Fosfolípidos/genética , Vesículas Secretoras/metabolismo , Espermatocitos/citología , Espermatocitos/metabolismo
15.
J Cell Biol ; 160(7): 993-9, 2003 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-12654903

RESUMEN

A large body of work indicates that chromosomes play a key role in the assembly of both a centrosomal and centrosome-containing spindles. In animal systems, the absence of chromosomes either prevents spindle formation or allows the assembly of a metaphase-like spindle that fails to evolve into an ana-telophase spindle. Here, we show that Drosophila secondary spermatocytes can assemble morphologically normal spindles in the absence of chromosomes. The Drosophila mutants fusolo and solofuso are severely defective in chromosome segregation and produce secondary spermatocytes that are devoid of chromosomes. The centrosomes of these anucleated cells form robust asters that give rise to bipolar spindles that undergo the same ana-telophase morphological transformations that characterize normal spindles. The cells containing chromosome-free spindles are also able to assemble regular cytokinetic structures and cleave normally. In addition, chromosome-free spindles normally accumulate the Aurora B kinase at their midzones. This suggests that the association of Aurora B with chromosomes is not a prerequisite for its accumulation at the central spindle, or for its function during cytokinesis.


Asunto(s)
División Celular/fisiología , Cromosomas/fisiología , Drosophila/fisiología , Meiosis/fisiología , Espermatozoides/fisiología , Huso Acromático/metabolismo , Animales , Aurora Quinasas , Centrosoma/fisiología , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes de Insecto/fisiología , Masculino , Meiosis/genética , Microtúbulos/metabolismo , Microtúbulos/fisiología , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Espermatocitos/citología , Espermatocitos/fisiología , Espermatozoides/citología
16.
BMC Mol Cell Biol ; 20(1): 24, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286886

RESUMEN

During production of the original article [1], there was a technical error that resulted in author corrections not being rendered in the PDF version of the article.

17.
BMC Mol Cell Biol ; 20(Suppl 1): 7, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31284878

RESUMEN

BACKGROUND: The calmodulin-regulated spectrin-associated proteins (CAMSAPs) belong to a conserved protein family, which includes members that bind the polymerizing mcrotubule (MT) minus ends and remain associated with the MT lattice formed by minus end polymerization. Only one of the three mammalian CAMSAPs, CAMSAP1, localizes to the mitotic spindle but its function is unclear. In Drosophila, there is only one CAMSAP, named Patronin. Previous work has shown that Patronin stabilizes the minus ends of non-mitotic MTs and is required for proper spindle elongation. However, the precise role of Patronin in mitotic spindle assembly is poorly understood. RESULTS: Here we have explored the role of Patronin in Drosophila mitosis using S2 tissue culture cells as a model system. We show that Patronin associates with different types of MT bundles within the Drosophila mitotic spindle, and that it is required for their stability. Imaging of living cells expressing Patronin-GFP showed that Patronin displays a dynamic behavior. In prometaphase cells, Patronin accumulates on short segments of MT bundles located near the chromosomes. These Patronin "seeds" extend towards the cell poles and stop growing just before reaching the poles. Our data also suggest that Patronin localization is largely independent of proteins acting at the MT minus ends such as Asp and Klp10A. CONCLUSION: Our results suggest a working hypothesis about the mitotic role of Patronin. We propose that Patronin binds the minus ends within MT bundles, including those generated from the walls of preexisting MTs via the augmin-mediated pathway. This would help maintaining MT association within the mitotic bundles, thereby stabilizing the spindle structure. Our data also raise the intriguing possibility that the minus ends of bundled MTs can undergo a limited polymerization.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centrosoma/metabolismo , Segregación Cromosómica , Cinesinas/metabolismo , Microtúbulos/metabolismo , Polimerizacion , Unión Proteica , Huso Acromático/metabolismo
18.
Elife ; 72018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30475206

RESUMEN

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Mitosis , Proteínas Nucleares/genética , Factores de Empalme de ARN/genética , Animales , Anticuerpos Neutralizantes/farmacología , Segregación Cromosómica/efectos de los fármacos , Secuencia Conservada , Proteínas del Citoesqueleto , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mitosis/efectos de los fármacos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores de Empalme de ARN/antagonistas & inhibidores , Factores de Empalme de ARN/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
19.
Curr Biol ; 14(17): 1569-75, 2004 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-15341744

RESUMEN

We performed a functional analysis of fascetto (feo), a Drosophila gene that encodes a protein homologous to the Ase1p/PRC1/MAP65 conserved family of microtubule-associated proteins (MAPs). These MAPs are enriched at the spindle midzone in yeast and mammals and at the fragmoplast in plants, and are essential for the organization and function of these microtubule arrays. Here we show that the Feo protein is specifically enriched at the central-spindle midzone and that its depletion either by mutation or by RNAi results in aberrant central spindles. In Feo-depleted cells, late anaphases showed normal overlap of the antiparallel MTs at the cell equator, but telophases displayed thin MT bundles of uniform width instead of robust hourglass-shaped central spindles. These thin central spindles exhibited diffuse localizations of both the Pav and Asp proteins, suggesting that these spindles comprise improperly oriented MTs. Feo-depleted cells also displayed defects in the contractile apparatus that correlated with those in the central spindle; late anaphase cells formed regular contractile structures, but these structures did not constrict during telophase, leading to failures in cytokinesis. The phenotype of Feo-depleted telophases suggests that Feo interacts with the plus ends of central spindle MTs so as to maintain their precise interdigitation during anaphase-telophase MT elongation and antiparallel sliding.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Huso Acromático/fisiología , Animales , Secuencia de Bases , Western Blotting , Proteínas de Ciclo Celular/fisiología , Mapeo Cromosómico , Citocinesis/genética , Citocinesis/fisiología , Cartilla de ADN , Drosophila/fisiología , Proteínas de Drosophila/fisiología , Femenino , Componentes del Gen , Expresión Génica , Inmunohistoquímica , Masculino , Proteínas Asociadas a Microtúbulos/fisiología , Datos de Secuencia Molecular , Mutación/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia , Factores Sexuales , Espermatocitos/metabolismo , Huso Acromático/genética , Transgenes/genética
20.
Mol Biol Cell ; 15(1): 121-31, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-13679514

RESUMEN

We have performed a mutational analysis together with RNA interference to determine the role of the kinesin-like protein KLP67A in Drosophila cell division. During both mitosis and male meiosis, Klp67A mutations cause an increase in MT length and disrupt discrete aspects of spindle assembly, as well as cytokinesis. Mutant cells exhibit greatly enlarged metaphase spindle as a result of excessive MT polymerization. The analysis of both living and fixed cells also shows perturbations in centrosome separation, chromosome segregation, and central spindle assembly. These data demonstrate that the MT plus end-directed motor KLP67A is essential for spindle assembly during mitosis and male meiosis and suggest that the regulation of MT plus-end polymerization is a key determinant of spindle architecture throughout cell division.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Espermatocitos/metabolismo , Huso Acromático/metabolismo , Animales , Centrosoma/metabolismo , Segregación Cromosómica , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/efectos de los fármacos , Proteínas de Drosophila/genética , Genes Fúngicos/genética , Masculino , Meiosis/fisiología , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/genética , Mitosis/fisiología , Mutación , ARN Interferente Pequeño/farmacología , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA