Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209958

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose pathophysiology is largely unknown. Despite the fact that motor neuron (MN) death is recognized as the key event in ALS, astrocytes dysfunctionalities and neuroinflammation were demonstrated to accompany and probably even drive MN loss. Nevertheless, the mechanisms priming astrocyte failure and hyperactivation are still obscure. In this work, altered pathways and molecules in ALS astrocytes were unveiled by investigating the proteomic profile and the secreted metabolome of primary spinal cord astrocytes derived from transgenic ALS mouse model overexpressing the human (h)SOD1(G93A) protein in comparison with the transgenic counterpart expressing hSOD1(WT) protein. Here we show that ALS primary astrocytes are depleted of proteins-and of secreted metabolites-involved in glutathione metabolism and signaling. The observed increased activation of Nf-kB, Ebf1, and Plag1 transcription factors may account for the augmented expression of proteins involved in the proteolytic routes mediated by proteasome or endosome-lysosome systems. Moreover, hSOD1(G93A) primary astrocytes also display altered lipid metabolism. Our results provide novel insights into the altered molecular pathways that may underlie astrocyte dysfunctionalities and altered astrocyte-MN crosstalk in ALS, representing potential therapeutic targets to abrogate or slow down MN demise in disease pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/citología , Metabolómica/métodos , Proteómica/métodos , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Astrocitos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Glutatión/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Cultivo Primario de Células , Mapas de Interacción de Proteínas , Transducción de Señal , Médula Espinal/citología , Médula Espinal/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769284

RESUMEN

Mitochondria-ER contacts (MERCs), tightly regulated by numerous tethering proteins that act as molecular and functional connections between the two organelles, are essential to maintain a variety of cellular functions. Such contacts are often compromised in the early stages of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). TDP-43, a nuclear protein mainly involved in RNA metabolism, has been repeatedly associated with ALS pathogenesis and other neurodegenerative diseases. Although TDP-43 neuropathological mechanisms are still unclear, the accumulation of the protein in cytoplasmic inclusions may underlie a protein loss-of-function effect. Accordingly, we investigated the impact of siRNA-mediated TDP-43 silencing on MERCs and the related cellular parameters in HeLa cells using GFP-based probes for MERCs quantification and aequorin-based probes for local Ca2+ measurements, combined with targeted protein and mRNA profiling. Our results demonstrated that TDP-43 down-regulation decreases MERCs density, thereby remarkably reducing mitochondria Ca2+ uptake after ER Ca2+ release. Thorough mRNA and protein analyses did not highlight altered expression of proteins involved in MERCs assembly or Ca2+-mediated ER-mitochondria cross-talk, nor alterations of mitochondrial density and morphology were observed by confocal microscopy. Further mechanistic inspections, however, suggested that the observed cellular alterations are correlated to increased expression/activity of GSK3ß, previously associated with MERCs disruption.


Asunto(s)
Calcio/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mitocondrias/metabolismo , Transducción de Señal
3.
Int J Mol Sci ; 21(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906285

RESUMEN

In late 2012 it was evidenced that most of the human genome is transcribed but only a small percentage of the transcripts are translated. This observation supported the importance of non-coding RNAs and it was confirmed in several organisms. The most abundant non-translated transcripts are long non-coding RNAs (lncRNAs). In contrast to protein-coding RNAs, they show a more cell-specific expression. To understand the function of lncRNAs, it is fundamental to investigate in which cells they are preferentially expressed and to detect their subcellular localization. Recent improvements of techniques that localize single RNA molecules in tissues like single-cell RNA sequencing and fluorescence amplification methods have given a considerable boost in the knowledge of the lncRNA functions. In recent years, single-cell transcription variability was associated with non-coding RNA expression, revealing this class of RNAs as important transcripts in the cell lineage specification. The purpose of this review is to collect updated information about lncRNA classification and new findings on their function derived from single-cell analysis. We also retained useful for all researchers to describe the methods available for single-cell analysis and the databases collecting single-cell and lncRNA data. Tables are included to schematize, describe, and compare exposed concepts.


Asunto(s)
ARN Largo no Codificante/metabolismo , Linaje de la Célula , Bases de Datos Genéticas , Regulación de la Expresión Génica , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/patología , Empalme del ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Análisis de la Célula Individual
4.
Acta Physiol (Oxf) ; 240(4): e14122, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38483046

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/diagnóstico , Síndrome de Fatiga Crónica/epidemiología , Síndrome Post Agudo de COVID-19 , Pandemias , Músculo Esquelético/metabolismo
5.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067180

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease associated with progressive muscle atrophy, paralysis, and eventually death. Growing evidence demonstrates that the pathological process leading to ALS is the result of multiple altered mechanisms occurring not only in MNs but also in other cell types inside and outside the central nervous system. In this context, the involvement of skeletal muscle has been the subject of a few studies on patients and ALS animal models. In this work, by using primary myocytes derived from the ALS transgenic hSOD1(G93A) mouse model, we observed that the myogenic capability of such cells was defective compared to cells derived from control mice expressing the nonpathogenic hSOD1(WT) isoform. The correct in vitro myogenesis of hSOD1(G93A) primary skeletal muscle cells was rescued by the addition of a conditioned medium from healthy hSOD1(WT) myocytes, suggesting the existence of an in trans activity of secreted factors. To define a dataset of molecules participating in such safeguard action, we conducted comparative metabolomic profiling of a culture medium collected from hSOD1(G93A) and hSOD1(WT) primary myocytes and report here an altered secretion of amino acids and lipid-based signaling molecules. These findings support the urgency of better understanding the role of the skeletal muscle secretome in the regulation of the myogenic program and mechanisms of ALS pathogenesis and progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Ratones , Humanos , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/patología , Ratones Transgénicos , Superóxido Dismutasa-1/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Células Musculares/metabolismo , Metaboloma
6.
Methods Mol Biol ; 2348: 71-90, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34160800

RESUMEN

Mammalian genomes are pervasively transcribed and a small fraction of RNAs produced codify for proteins. The importance of noncoding RNAs for the maintenance of cell functions is well known (e.g., rRNAs, tRNAs), but only recently it was first demonstrated the involvement of microRNAs (miRNAs) in posttranscriptional regulation and then the activity of long noncoding RNAs (lncRNAs) in the regulation of miRNAs, DNA structure and protein function. LncRNAs have an expression more cell specific than other RNAs and basing on their subcellular localization exert different functions. In this book chapter we consider different protocols to evaluate the expression of lncRNAs at the single cell level using genome-wide approaches. We considered the skeletal muscle as example because the most abundant tissue in mammals involved in the regulation of metabolism and body movement. We firstly described how to isolate the smallest complete contractile system responsible for muscle metabolic and contractile traits (myofibers). We considered how to separate long and short RNAs to allow the sequencing of the full-length transcript using the SMART technique for the retrotranscription. Because of myofibers are multinucleated cells and because of it is better to perform single cell sequencing on fresh tissues we described the single-nucleus sequencing that can be applied to frozen tissues. The chapter concludes with a description of bioinformatics approaches to evaluate differential expression from single-cell or single-nucleus RNA sequencing.


Asunto(s)
Biología Computacional/métodos , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Regulación de la Expresión Génica , Biblioteca de Genes , MicroARNs/genética , Fibras Musculares Esqueléticas/metabolismo , Poliadenilación , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética
7.
Sci Rep ; 11(1): 13008, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155272

RESUMEN

Most biological features that occur on the body after death were already deciphered by traditional medicine. However, the molecular mechanisms triggered in the cellular microenvironment are not fully comprehended yet. Previous studies reported gene expression alterations in the post-mortem condition, but little is known about how the environment could influence RNA degradation and transcriptional regulation. In this work, we analysed the transcriptome of mouse brain after death under three concealment simulations (air exposed, buried, and submerged). Our analyses identified 2,103 genes differentially expressed in all tested groups 48 h after death. Moreover, we identified 111 commonly upregulated and 497 commonly downregulated genes in mice from the concealment simulations. The gene functions shared by the individuals from the tested environments were associated with RNA homeostasis, inflammation, developmental processes, cell communication, cell proliferation, and lipid metabolism. Regarding the altered biological processes, we identified that the macroautophagy process was enriched in the upregulated genes and lipid metabolism was enriched in the downregulated genes. On the other hand, we also described a list of biomarkers associated with the submerged and buried groups, indicating that these environments can influence the post-mortem RNA abundance in its particular way.


Asunto(s)
Encéfalo/metabolismo , Ambiente , Perfilación de la Expresión Génica , Transcriptoma , Animales , Autopsia , Biomarcadores , Encéfalo/patología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Ratones , Estabilidad del ARN , Reproducibilidad de los Resultados
8.
Biomed Pharmacother ; 142: 112000, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34426249

RESUMEN

The main goal of this study is to evaluate the efficacy of the paclitaxel (PTX) drug formulated with a liposomal nanosystem (L-PTX) in a peritoneal carcinomatosis derived from ovarian cancer. In vitro cell viability studies with the human ovarian cancer line A2780 showed a 50% decrease in the inhibitory concentration for L-PTX compared to free PTX. A2780 cells treated with the L-PTX formulation demonstrated a reduced capacity to form colonies in comparison to those treated with PTX. Cell death following L-PTX administration hinted at apoptosis, with most cells undergoing initial apoptosis. A2780 cells exhibited an inhibitory migration profile when analyzed by Wound Healing and real-time cell analysis (xCELLigence) methods after L-PTX administration. This inhibition was related to decreased expression of the zinc finger E-box-binding homeobox 1 (ZEB1) and transforming growth factor 2 (TGF-ß2) genes. In vivoL-PTX administration strongly inhibited tumor cell proliferation in ovarian peritoneal carcinomatosis derived from ovarian cancer, indicating higher antitumor activity than PTX. L-PTX formulation did not show toxicity in the mice model. This study demonstrated that liposomal paclitaxel formulations are less toxic to normal tissues than free paclitaxel and are more effective in inhibiting tumor cell proliferation/migration and inducing ZEB1/TGF-ß2 gene expression.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Paclitaxel/administración & dosificación , Neoplasias Peritoneales/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA