Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6525, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845217

RESUMEN

The sample from the near-Earth carbonaceous asteroid (162173) Ryugu is analyzed in the context of carbonaceous meteorites soluble organic matter. The analysis of soluble molecules of samples collected by the Hayabusa2 spacecraft shines light on an extremely high molecular diversity on the C-type asteroid. Sequential solvent extracts of increasing polarity of Ryugu samples are analyzed using mass spectrometry with complementary ionization methods and structural information confirmed by nuclear magnetic resonance spectroscopy. Here we show a continuum in the molecular size and polarity, and no organomagnesium molecules are detected, reflecting a low temperature and water-rich environment on the parent body approving earlier mineralogical and chemical data. High abundance of sulfidic and nitrogen rich compounds as well as high abundance of ammonium ions confirm the water processing. Polycyclic aromatic hydrocarbons are also detected in a structural continuum of carbon saturations and oxidations, implying multiple origins of the observed organic complexity, thus involving generic processes such as earlier carbonization and serpentinization with successive low temperature aqueous alteration.

2.
Science ; 379(6634): eabn9057, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821663

RESUMEN

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119853, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33971437

RESUMEN

The determination of the abundances of the CHx, C = O and aromatic groups in chondritic Insoluble Organic Matter (IOM) and coals by Infrared (IR) spectroscopy is a challenging issue due to insufficient knowledge on the absorption cross-sections and their sensitivity to the molecular environment. Here, we report a calibration approach based on a 13C synthetic model material whose composition was unambiguously determined by Direct-Pulse/Magic Angle Spinning Nuclear Magnetic Resonance (DP/MAS NMR). Ratios of the cross-sections of the CHx, C = O and aromatic groups have been determined, and the method has been applied to IOM samples extracted from four chondrites as Orgueil (CI), Murchison (CM), Tagish Lake (C2-ungrouped) and EET 92042 (CR2), and to a series of coals. The estimate of the aliphatic to aromatic carbon ratio (nCHx/nAro) in IOM samples from Orgueil, Murchison and Tagish Lake chondrites is in good agreement with Single-Pulse/NMR estimates earlier published, and is lower by a factor of 1.3 in the case of the CR chondrite EET 92042 (but the error bars overlap). In contrast, the aliphatic to carbonyl ratio (nCHx/nC=O) is overestimated for the four chondrites. These discrepancies are likely due to the control of the absorption cross-section of the C = O and C = C bonds by the local molecular environment. Regarding coals, the use of published NMR analyses has brought to light that the integrated cross-section ratio ACHx/AAro varies with the vitrinite reflectance over an order of magnitude. Here as well, the local oxygen speciation plays a critical control in AAro, which decreases with increasing the vitrinite reflectance. We provide an analytical law that links ACHx/AAro and vitrinite reflectance, which will allow the determination of nCHx/nAro for any coal sample, provided its vitrinite reflectance is known.

4.
Science ; 367(6483)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165559

RESUMEN

The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.

5.
Sci Adv ; 3(8): e1700407, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28808680

RESUMEN

The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(10): 2368-77, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16029859

RESUMEN

The present study questions the sensitivity and the accuracy of Raman spectroscopy as a tool for determining the maturity of natural organic matter (NOM). It focuses on the definition of optimized experimental parameters in order to maximize the quality of the Raman signal and control the accuracy and reproducibility of measurements. A series of 11 coals has been investigated, sampling a wide maturity range (2-7% vitrinite reflectance VR). The role of experimental parameters is first investigated. An excitation wavelength of 514.5 nm gives better results than 457.9 and 632.8 nm, minimizing the fluorescence background observed in the spectra of low-rank coals. Both Raman and fluorescence spectra were investigated with time-resolved experiments in air and argon. These data show that fluorescence and Raman spectra are sensitive to acquisition time and laser power parameters, and reveal a physicochemical instability of the samples under laser irradiation, mostly due to photo-oxidation processes. These data clearly show that the experiments, especially in air, should be performed with strictly constant acquisition parameters. In addition, the results of a whole series of coal measurements performed in air under constant experimental conditions show that Raman spectroscopy is definitely sensitive to the maturity of coal samples with VR> approximately 1%. The most sensitive spectral maturity tracers are the width of the D-band (FWHM-D), the ratio of the peak intensities of the D- and G-bands (I(D)/I(G)), the normalized ratio of the band integrated intensities A(D)/[A(D)+A(G)] for the maturity range VR=3-7% and the width of the G-band (FWHM-G) for VR=1-5%. However, the accuracy and reproducibility are definitely weaker in such measurements compared to the standard VR. Future work must solve the problem of sample stability under laser irradiation, and greatly increase the number of samples to improve the statistical significance of the results.


Asunto(s)
Carbón Mineral/análisis , Espectrometría Raman , Carbón Mineral/normas , Fluorescencia , Rayos Láser , Microscopía Electrónica de Transmisión , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA